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Appendix B |
Scattering by a Central Potential

B-1 Scattering Amplitude and Cross Section

The scattering of one particle off another at nonrelati

vistic energies is described by a
time-dependent Schrédinger equation

=

d ;

'éﬁ.ﬁ W(r,t) = H¥(r,t) (B-1)
ot

under appropriate boundary conditions. In the center of mass of the two particles, the

Hamiltonian has the form 5

i s

H=-——V4Vy B2

74 (B-2)

where g 15 the reduced mass and V' is the potential representing the interaction between

the two particles. If H is independent of time ¢, the time dependence in the wave
function may be separated from the rest,

¥(r, 1) = p{r)e=oHn
Here 1(r) is the eigenfunction of the time-independent Schrédinger equation
.12
—Q—ﬂv-’-w(r} + (V= EW(r)=0 (B-3)
For simplicity we shall consider $(r) to be a function of spatial coordinates only and
ignore any dependence on other variables, such as spin and isospin.

Incident flux. The usual scattering arrangement involves a collimated beam of projec-
tile particles traveling along the positive z-direction anc

1 incident on a target placed at
the origin. Except for Coulomb force, interactions between nuclei have short range. For

this reason, we shall consider first finite-range potentials and return later to Coulomb
interaction in §B-5. Outside the range of the interaction, we can take V = 0; both
particles are free and their wave functions may be represented by plane waves S
where k = \/2uE/h is the wave number. (For a Coulomb interaction, Coulomb wave
funetions must be used instead of plane waves.)
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The relation between wave function and intensity of the incident beam is given by
the quantum-mechanical probability current density

T h
S(r,t) = % {9V — YV} = ER‘.{@D EV@“J}

where I stands for the real part. For an incident plane wave traveling along the positive
z-direction, the number of particles passing through a unit area perpendicular to the
z-axis is then :

S >R{e—***,r—"—d;e””} =2 _s (B-4)

ipdz I

where v is the velocity of the projectile when it is still outside the interaction region.
The value of incident flux S; depends on the way the plane wave is normalized. Here
we have taken it in such a way that S5; = v,

Scattered wave. The scattered particle outside the interaction region is described
by a spherical wave e*" /p radiating outward from the center of the interaction region.
The particle density in the incident beam is usually sufficiently low that we may ignore
any interference between the incident and scattering particles. As a result, the wave
function at large 7 is a linear combination of a plane wave, made of the incident beam
and particles not scattered by the potential, and a spherical wave, made of scattered
particles. The result may be expressed as

gikr

V() —mm € 4 f(0, 65)? (B-5)

Here, f(f,¢) is the scattering amplitude which measures the fraction of incident wave
scabtered in the direction with polar angle # and azimuthal angle ¢. In general, both
p(r) and f(0,¢) are also functions of the incident wave vector k and scattered wave
vector k'. However, to simplify the notation, we shall not indicate them unless required
in the discussion. Furthermore, the probability for scattering is sufficiently small that
the normalization of the incident wave is not affected by particles removed from the
incident beam due to scattering.

It is convenient to take the origin of the coordinate system to be at the center of
the region where the two particles come into contact with each other. Since the z-axis
is chosen to be along the direction the two particles approaching each other outside
the interaction zone, the wy-plane is fixed by requiring it to be perpendicular to the
z-axis, However, we do not have a natural way to define the orientation of the z-
or y-axis in the plane, if all the particles involved have spin J = 0, or if the spins of
neither the incident nor the target particles are polarized in any given direction and the
orientations of the spin of the particles in the final state are not detected. In such cases,
the system is invariant under a rotation around the z-axis and the azimuthal angle ¢
cannot be determined uniquely. The wave function of the system must be independent
of ¢ and the scattering amplitude becomes a function of the polar angle 8 only.

The scattering angle £ is the angle between the incident wave vector k and the
scattered wave vector k', as shown in Fig. B-1. For # # 0, k and k' forms a plane, the
scattering plane. We may define a unit vector n perpendicular to the scattering plane
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Figure B-1: The scattering plane defined by & and ¥/, respectively, the wave
vectors of the projectile and the scattered particle. The scaltering angle £ is that
between k and k. The scattering is independent of the azimuthal angle ¢ unless
the polarization direction of the spin of at least one of the particles is known.

in the following way:
. kx¥
n =
k| ||

The orientation of n depends on the vector k', which, in turn, depends on where the
detector is placed. Unless polarization is involved, the choice of the direction of n
is arbitrary, usually determined by the convenience of the experimental arrangement.
However, if one or both particles involved in the initial state are polarized, or if the
spin orientations of one or both of the particles in the final state are detected, spin
dependence in the interaction between the two particles may cause a difference in the
scattering results that depends on the direction of n relative to that of polarization.
Under such conditions, the scattering amplitude is a function of 8 as well as ¢.

(B-6)

Differential cross section. The differential scattering cross section may be expressed

in terms of the scattering amplitude f (f). The probability current density for the
scattered spherical wave is given by the expression

R\ g d etk 1 )
s -5{(10Z) B2 (02}« 2o sor
_. 10°-) = (F0=)} = S15@F + 06—
If the scattered particle is observed by a detector with effective area dg placed at
distance r from the scattering center, the solid angle subtended by the detector at the
origin is

dQY = 43

2

and the mumber of particles recorded per unit time is

N, = 8, da = 5,72 dQ
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The differential scattering cross section, do/d), sometimes represented also as o(f), is
defined as the number of particles scattered into a solid angle d{2 at angle # divided by
the incident flux,
do 5 =
I (U)s (B7)
As we have seen in §1-3, it has the (lmlenswn of an area and gives a measure of the
probability of scattering into a particular direction.
The scattering cross section is the integral of the differential cross section over all
solid angles,

g= /”!—”dsz— /|f(6)[227rs'u19d9

It conveys an idea how much of the incident beam is intercepted by each particle in the
target. Since the typical unit of length for nuclei is the femtometer (fm), a convenient
unit for scattering cross section is femtometer squared (= 1073 m?) and that for do/dQ
is the femtometer squared per steradian. A derived unit, the barn (1 barn = 10728 m?),
is often used in quoting measured values. Hadronic processes are usnally of the order
of millibarns (1 mb= 107* m? or 0.1 fm*), whereas electromagnetic processes are of
the order of nanobarns (1 nb= 107% m?) and weak interaction processes of the order
of femtobarns (1 fb = 107%% m?), as mentioned in Chapter 1.

B-2 Partial Waves and Phase Shifts

Partial wave expansion. If the interaction potential is a central one, V = V(r), that
depends only on the relative distance r, angular momentum is a constant of motion. In
this case, it is convenient to decompose the wave function ¥(r) into a product of radial
and angular parts and write it as a sum over components with definite orbital angular
momentum £, or parficl waves,

8) — i [ Rg(?') }fw(gj (B-S)
=0

where the coefficients a; are the amplitudes of each partial wave. Only spherical har-
monics Y, (¢, ¢) with m = 0 are involved here, as we are considering systems indepen-
dent of the azimuthal angle ¢.

Since Ye(#) is an eigenfunction of the angular part of Bq. (B-3) with eigenvalue
£(€ + 1}, the radial wave function for partial wave £ satisfies the equation

"%{}}5;{'"2 ;i g(f: 2 }Rffr) +V(r)Re(r) = ER(r)
In terms of the modified radial wave function

(1) = 1 Re(r)
the equation may be simplified to

d?u(1) { £(€ + 1)

dr? pd

—=V(r)—k }uf(r )=0 (B-9)
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For short-range potentials, V(r) goes to zero as r — 0. The same is also true for the
€€ +1)/7* term. In the asymptotic regions, we are left with a simple second-order
differential equation of the form

d*u,(r)
dr

+ Eu,(r) =0

The solution for this equation is the familiar linear combination of sin(kr) and cos(kr).
That is, at large r, the function u,(r) must take on the form

u(r) —=s=— Aesin(kr — 3fmw) + By cos(kr — Lir)

Il

Cesin(kr — Lon + &)

— C{r;{e—--i[kr—%f?r) _ 82?:6( e\i{kr-—%t"ﬂ)} (B-]O)
where Ay and By, or C; (C) and §, are two constants that must be determined from
boundary conditions. The phase factor %(?w is included here so that it is more convenient

to compare with the asymptotic form of spherical Bessel functions we need to carry out
later.

Phase shift. The angle §; is known as the phase shift. Its physical meaning can be
seen by comparing Eq. (B-10) with the partial wave expansion of a plane wave,

=]
e =5\ fan (28 + 1) % (kr) Yo (6) (B-11)
£=0
Asymptotically, the spherical Bessel function jo(kr) has the form
i sin(kr — Lém)
jf(kr} T 0 k?' .
and may be compared with that of Eq, (B-10).
In the asymptotic region, a plane wave may be written as
oo £
iz - i 3 g
A g \!4HF2€+ 1) = sin(kr — 147) Yio(6)
=5} _1‘2 : 1 3 1
— Ar(26 +1 l[kv‘—gfn') _ —'I(k!'-—zfﬂ} Viol0
g Var(26+1) —Eik?.{e e } w(0)
i 01
oa eikr T’_Ee”"(k""gfﬂ‘}
= Y Jan(2e+ 1 ————v}}’ 9 B-12
g, el ){2-ikr 2ikr w(?) (B2

where we have used the relation ¢*™/? = i¢ to put the expression into a form convenient
for later needs. The difference between Egs. (B-10) and (B-12) is the phase shift,
for example, in the argument of the sine function. Because of interaction induced by
potential V(r), the phase of partial wave ¢ in Eq. (B-10) is shifted by a factor §; with
respect to that of a free particle represented by the plane wave of Eq. (B-12). This
is a result we could have anticipated from the beginning. For a real potential, which
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we have implicitly assumed here, only elastic scattering can take place, Furthermore,
if the potential is also a central one, orbital angular momentum £ is a good quantum
number and the probability current density in cach £-partial wave channel is conserved.
The only thing in the wave function that can change as a result of scattering is the
phase angle, and this is represented by the phase shift . We shall return at the end
of this section with an example using a square-well potential as illustration.

In general, elastic as well as inelastic scattering can take place. Such a situation
is represented by a complex scattering potential, with the imaginary part representing
loss of probability from the incident channel due to such inelastic events as excitation
of the target nucleus and projectile particle, absorption of the incident particle by the
target, and creation of new particles. In these cases, the phase shifts are also complex
in general. We shall return to the case of scattering by a complex potential in §B-4.

Elastic scattering cross section. Using the result of Eq. (B-10}, the scattering wave
function of Eq. (B-8) in the asymptotic region may be written as

V(1,0) =z 3 6 Yeo(0)—sin(kr — Lem + &) (B-13)
=0 i

where the unknown coefficients a; in Eq. (B-8) and C; in Eq. (B-12) are combined
into a single quantity aj. Since this is just another asymptotic form of the same wave
function as given earlier in Eq. (B-5), we arrive at the equality

sz ik o0 1
e** + f(0) “?‘ == Th u.;}’w({});sin(kr — 3t + &)
£=0
oo iR ik g er)
_ 'y { e & H‘o,e_____} B-14
EZZUH'EYEU( ) ( '.!) e kr € 2?‘;\”” ( J

Using the results of Eqs. (B-12) and (B-13), we can rewrite (B-14) in the following way:

oo = 1 eikr =, 1 5 i 4
{g]\ 4m (28 + 1) 5= Yoo 0) + F(6)}— {Enafﬂ w(0)(—i)te e

=i{kr— .lf‘.lT)

- £ {VaGr e}

£=0

; 1
E—:(krhzfir)

s = ! —tdy =,
2\ ¥a(O)e ) —

(B-15)

The equation is arranged in such a way that terms related to e are on the first line
and terms related to =™ are on the second line of both sides.

Since the functions ™" and e=* are lincarly independent of each other, their

coefficients on the two sides of Eq. (B-15) must separately equal each other. From the
coeflicients for e~ =7/2) we gbtain the result

ay = /4w (28 + 1) 1™

Substituting this relation back into the coefficients of e* in Eq. (B-15), the scattering
amplitude may be put in terms of phase shifts as

47 =

10) = S 3 ValF (e — 1)Yau(6)
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Vidr 2 &
= _k_'” S V20 + 1€ sin 6,Y0(0) (B-16)
=0

In terms of the phase shifts, the differential scattering cross section may be written as

do 47| . 2
22 = 221N V3 + 1 e sin 6,30 (6) (B-17)

by substituting the results of Eq. (B-16) into (B-7).
From the orthogonal condition on spherical harmonics

VE T |
L[ Y(0.0)Yems 6, 8) 5in 08 dp = by (B-18)

we see that the scattering cross section may be reduced to a particularly simple form

o = E (2 4 1)(2¢ + 1)ei=%) gin 6, sin &y jﬁ Yeo(#)Yeo(8)27 sin 6 d
k@
4m T
= r; 2¢ + 1) sin* &
= Ty Dt - e (B-19)
Z

Since we have taken the scattering potential V(r)} to be real in this section, only elastic
scattering can take place. Later on, when we come to the more general case of a
complex scattering potential, inelastic scattering can also take place. The superscript
is to remind us that the cross section calculated here is for elastic scattering only,

Relation to scattering potential. A more direct connection between phase shift and
scattering potential is provided by the following analysis. By making the substitution
p = kr, Eq. (B-9) may be further simplified to

Pulp) (Vo) e+
dp® E p

. 1}15£(p} i (B-20)

Ior a free particle, we have V(p) = 0 and the corresponding modified radial wave
function fi(p) for partial wave £ satisfies the equation

d? fs(p) B {!’(f s 1)
dp? 2

1}e(p) = 0 (B-21)

where fi(p) = pje(p), with j¢(p) a spherical Bessel function of order £.

The ¢-dependent term as well as the constant term in Egs. (B-20) and (B-21) may
be eliminated by multiplying Eq. (B-20) with fe(p) and subtracting from it Eq. (B-21)
multiplied by u,(p). The result is

: ; v
dp { i{f it RF} 2 é‘” Jelpu(p) =0 (B-22)
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When r — co, the spherical Bessel function j,(p) — p~'sin(p — %F:?r), as we have seen
earlier, and we obtain the results

felp) — sin(p — %e-rr) % — cos(p — %f’a‘r)
and
. 1 dat, B .
uy(p) — sin(p — 347 + &) o — cos(p — z0m + &¢)
The quantity within the curly brackets in Bq. (B-22) becomes
d d :
di;'u.f - j'g(% — cos(p — $4m) sin(p — 20m + 8) — sin(p — 36m) cos(p — 3érx + &)

= gin &

where the last equality is obtained using standard trigonometric identities. Equation
(B-22) now reduces to

1 v
2 sinde = -2 oty
" [~V
sin by = — /; Tf,g(p)uf(p) dp (B-23)

This relation determines the phase shift &; from a potential V{p) up to a multiple of 2r.
The general convention to fix this uncertainty is to take é; = 0 as E — 0. Although
Iq. (B-23) expresses & in terms of V(r), the relation is not as direct as it appears on
the surface, since u.{p) in the integrand depends also on the potential, as can be seen
from Eq. (B-20).

Partial wave and bombarding energy. One useful result of partial wave analysis
is that, for low bombarding energies, only the phase shifts for £ =~ 0 are substantially
different from zero. This can be seen from the following argument. The classical turning
radius r; is defined as the point where the (repulsive) potential is equal to the incident
energy. For partial wave channel ¢, the effective potential in Eq. (B-9) is

i . REE(6+1) r
¥ (?‘) =V (1") + EET (B—Z"i)
As a result, we may use the relation
2 pip
E=V(r)+ ik Lot t 1 (B-25)

2u i

to determine the classical turning point 7. B

For a short-range potential, the eflective potential V(r) of Eq. (B-24) for large values
of v and £ is dominated by the repulsive centrifugal barrier term £(¢ + 1)/r%. (At very
small , the centrifugal term also dominates by virtue of its inverse r*-dependence;
consequently, only in the intermediate range is the nuclear potential important.) As a
result, Eqs. (B-20) and (B-21) become the same for large f-values and we obtain

Jim (1) = f(r)
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Consequently,
5?_ JF—— D

We shall now establish a criterion by which £ may be considered as large enough such
that phase shifts may be ignored for partial waves of order greater than this value.
Let the range of the potential V(r) be represented by ry. At low energics, the

classical turning radius 7, is large and we have rq < r;. We may therefore ignore the
contribution of ¥(r,) in the definition of the turning radius. Equation (B-25) can now
be approximated by the expression

B R2e(e+1)

T o
or

(k) = £(£41)

This gives us an approximate value of the turning radius that is independent of V(7).
It also implies that the scattering takes place mainly in channels with £ < kr ;- In
other words, for € 3 kr, the phase shifts 8 — 0.

On the other hand, », is a quantity that depends both on E and £. It is therefore
more convenient to use rg, the range of the potential, instead of r, as the condition to
determine the highest partial wave that can contribute to the scattering. Since these
two quantities are of the same order of magnitude, we obtain the condition

&g — 0 for {3 krp (B-26)

Classically, no scattering occurs if a point particle approaches a hard sphere with impact
parameter b greater than the radins of the sphere ry. Since £ = |r x p| = hkr, we arrive
at the conclusion that partial waves with £/A > kry are not scattered. Equation (B-26)
is essentially a quantum-mechanical statement of the same criterion.

The range of nuclear potentials is of the order of a femtometer. For nucleon-nucleon
collisions at E = 1 MeV in the center of mass, krg ~ 0.2. Hence only £ = 0, or s-
wave, phase shift can be significantly different from zero. This is observed to be true
as can be seen, for example, in the values extracted from experimental nucleon-nueleon
scattering shown in Fig. 3-3. From the figure, we find that only the s-wave phase shifts
are different from zero at low energies and that the sizes of the phase shifts for the higher
partial waves, for example p-waves, do not become significant until £ > 10 MeV. For

this reason, nucleon-nueleon collision is often approximated by s-wave scattering for
E <10 MeV.

Example of a square-well potential. It is instructive to see the actual relation
between phase shifts and scattering potential for a simple case. We shall limit ourselves
to s-wave scattering and caleulate 8y for a square well of radius rp and bombarding
energy E =1 MeV. For an attractive potential of depth V5, we have

—Vy forr<m
f —
vin) { 0 forr>=mrg

The radial equation, obtained by solving Eq. (B-9) inside the well, is

wg(r) = Asin kr for T <71



418 Appendix B: Scattering by a Central Potential

where 1
v = 5y/20(B + V)

The amplitude A will be determined later. For a repulsive well, V; is a negative quantity.
In this case x becomes purely imaginary for E < |V4], and instead of a sine function,
the radial wave function inside the well is a hyperbolic sine function.

Outside the well, V(r) = 0, and the radial wave function is sinusoidal for both
attractive and repulsive wells,

wg(r) = sin(kr + 8y) for >y

For convenience, we have normalized the wave function to have an amplitude of unity
outside the well. The requirement that the logarithmic derivative of the wave function
be continuous across the boundary at 7 = ry gives us the condition

sin K1y sin(krg + 6g)

keoskry K cos(krg + &a)

From this result, the s-wave phase shift is found to be

Alotsd G = : I’-If T
o ‘*; o ot |

where n is to be determined by the condition thaf 5[] = {] at =0, _as we liave done
for Eq. (B-23). The amplitude of the wave function 1nside the well is determined by
the requirement that ug(r) itself is continuous across the boundary,

: k
by = nw — krg + tan™! (E tan h‘.?‘())

_ sin(krg + g
T sin(krg)

The results are plotted in Fig. B-2.

For an infinite repulsive potential, the radial wave function cannot penetrate into
the well, as shown in Fig. B-2(a), and u(r) = 0 for < rg as a result. Instead of
starting at v = 0, the nonvanishing part of the wave function is now shifted outward
by a distance ro. The phase shift is then § = —kry. The scattering cross section from
Eq. (B-19) becomes

o :—zr&.m Oy = ilk— gin? krp & 4”rrU
a result we expect from comparisous with the scattering of two hard spheres of radius
rp each. For a finite repulsive well, the radial wave function does not vanish completely
inside the well. The amplitude rises exponentially at small + instead of sinusoidally
for a free particle, as shown in Fig. B-2(b). The phase shift is still negative, but the
magnitude of d is less than that for an infinite repulsive well.

For an attractive well, the phase shift is positive. If |14 is small, the wave function
inside the well rises faster near the origin than that of a free particle. As a result, the
nodes of the wave function outside the well are shifted closer to the origin, as shown in
I'ig. B-2(c). As the attractive well becomes deeper, the phase shift grows in magnitude.

§B-3 Effective Range Analysis
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Figure B-2: Radial wave functions for low-energy, s-wave scattering by a square
well. For comparison, the corresponding form for a free particle is shown as a
dotted curve in each case. The result of an infinite repulsive well is shown in (a)
and a finite one in (b). The results for attractive potentials of different depths are
shown in (¢) to (f). The wave functions inside the well in these cases grow faster
near the origin than that for a free particle and the phase shift is positive.

At well depth corresponding to 8y = /2, shown in Fig. B-2(d), the scattering cross

~ section becomes 4 /k%. For E = 0, we have the result

Aqr
o= ﬁ — DG
The meaning of an infinite scattering cross section at zero energy is that the incident
particle never emerges from the potential well; i.e., a bound state is formed at ' = (.
In fact, a bound state appears whenever the phase shift is an odd integer multiple of
w/2. On the other hand, when & is a multiple of «, the cross section drops to zero and
nodes in the wave function appear also inside the well, as can be seen in Fig. B-2(f).
In realistic situations, the potential has a more complicated form than a square well;
however, the qualitative features discussed above remain true.

B-3 Effective Range Analysis

Scattering length. For low bombarding energies, it is customary to express the
scattering results in terms of two parameters: scattering length e and effective range
7e. Since, in general, the cross section must be finite at £ = 0, we can define a length
parameter a by the relation

i_im o = dwa?

—

(B-27)
Except for a sign, the scaftering length is given in terms of the s-wave phase shift by
comparing Eq. (B-27) with (B-19),

, B 5og ;
a= }l}m %{—Ee % sin bu} (B-28)

.0

The sign convention adopted here is such that the scattering length is positive if there
is a bound state, as for example in the case of isoscalar (T' = 0) nucleon-nucleon
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interaction, and a < 0 if there is no bound state, as for example in the case of isovector
(T" = 1) nucleon-nucleon interaction.

Iiffective range. The energy dependence of scattering at low energies is given by the
effective range .. The origin of this parameter comes from the following rationale. For
£=0, Eq. (B-9) may be written as

d*ug(k, ) {2;:

dr? h?

g L‘E}HO(R:, i (B-29)

where we have included the wave number & explicitly in the arguments of the modified
radial wave function up(k, r) so as to emphasize the energy dependence in the solution.
For two different energies, By = 2i%?/2u and E, = h?k3/2u, we have two different
solutions of Eq. (B-29), ue(k1,v) and w(ky,7), respectively. These functions satisfy the
[ollowing equations:

a2

201
—ag(ky,7) — {F{:V(T) - kf}un(r‘cl,r)

|
!

p (B-30)

(k) - {i_fv(r)—kg}uo(kg,r) -

By multiplying the first one of Eq. (B-30} with wup(ks,v) and the second one with
g{ky, 7) and integrating the difference over variable r, we obtain the result

I[GM{TL[](AIQ,T')

>

d d2

grtolkn ) = uolky,7) - (r‘u‘-z.?‘)}dr

+(kf — ki)f wo(ky, r)ug(ky, v)dr =10
0

The first integral may be carried out by parts, and we obtain the result

{'H.O(k.’g, "J') é’{tu [ki‘ ?') - Up U‘:IJ T') E’L{.D(kg, '!')} ‘0

= (6~ ) [ wolky,r)uolln,r) dr (B-31)
This is true for an arbitrary potential, including V() = 0.

Consider another function wy(k, r) satisfying the same equation as Eq. (B-29) except
with V(r) =0,

o

ol | ok, r)=0 (B-32)
dr?
Analogous to Eq. (B-31), we have
d d o9
{'L-'g (}132, ?')a‘—‘-?;‘[]”fi] 5 T) == 'I.-‘g(kl, T')—'Uu(klz? T‘)}

' 0

= (k2 - k2 ] vo(ky, 7)o (kg ) dr (B-33)
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UG(AIU)—'UU(&LU) — v (g, J

/m{"u
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vk, 1)
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d ; d
vk, 0) ~ S-volk, 0) = (k3 — k)
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JICQ cot (ﬁ.g (Alg) = AI] cot (5[](;{'1) — o
ki — ki /ﬂ

using Eq. (B-36).
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)tk
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0

V(r)=0.
he same equation as Eq. (B-29) except

=0 (B-32)
d . .
)Etu(kzﬂ”)} 0

3 volkr, 7)vo(ke, ) dr (B-33)
0
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If the potential has a short range, Eqs. (B-29) and (B-32) are identical to each other in

the asymptotic region. As a result, we may require that their solutions have the same
form at r = co,

vk, 7) = uolk,r) = Asin(kr + &)

oo

(B-34)

where the amplitude A will be determined later. Since the radial wave function Ry(r)
itself must be finite at the origin,

wolk, 1) ——=5= 0
The left-hand side of Eq. (B-31) may be expressed in terms of vy(%, r) using Eq. (B-34),

d i
{uﬂﬂcg, 7) Eﬂ,‘.(kl 1) —uplky, ) :r;?ﬂ.o(kg, ) }l

o0
0
d

d
= Jim {'Ug(kg, )2l ) = ok, )7 (ks -r)}

Using this, we can subtract Eq. (B-31) from (B-33). The contributions from 7 = oo on
the left-hand side of the two equations cancel each other and we are left with the result

l'u(kio)%ﬁn UC-Q, 0) s ‘U(}Uﬂg, U);g"'vu(kl, D)
= (k2 — k) /ﬂm{vn(kl,-r)vo(kz, r) — wo(ky, T)uo(ks, r)} dr  (B-35)

However, vg(k,7) does not vanish at the origin, as can be seen from Eq. (B-34), This
may be used to fix the amplitude A such that we(k,0) = 1. As a result,

sin(kr + &)

va(k, ) = sin &

(B-36)
and Eq. (B-35) simplifies to the form
b e O gl == 38 sl T s
dri-u 2 gbu( 1,0) = (k3 1)]0 {volky, r)volke, r) — wolky, 7)uo(ke, v)} d

Alternatively, we obtain

ky cot 6g(ke) — k1 cot fo(k1)
k2 — 2

:fﬂ {wo(ks, PYvalka, ) — wo(kr, r)ua(ka, 7)) dr
using Eq. (B-36).

If both £, and E, are close to some value E = 2uk®/h*, the above expression may
be written as

d : e oy ‘
mkcotﬁn—[] {LUUC,]} ud(k,m)} dr

The effective range is defined as twice the integral in the expression at k = 0,

T Q/U {'{.ﬁ(k‘,?‘) —ud(k, TJ}k:D dr
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The energy dependence of the s-wave phase shift can now be expressed in the form
keot dp(k) = (kcot fg)p=g + %?‘ek? + .- (B-37)

Using the definition of scattering length @ in Eq. (B-28), the first term on the right-hand
side of Eq. (B-37) can be shown to be equal to —1/a. Up to order k?, we find

1 1
kcotbg(k) = =50 §rek2

The s-wave scattering cross section is then

d
k4 {%Tgkz - 1/&}2

o= g\z T sin’ 2 6a(k) =

which reduces to Eq. (B-27) when & — 0.

B-4 Scattering from a Complex Potential

When a particle is scattered from a target, part of the kinetic energy may be trans-
formed into excitation energy of the projectile, the target nucleus, or both. At the
same time, some of the nucleons from one may be transferred to the other. If enough
energy is available in the collision, secondary particles may also be created. All such
processes are inelastic in the sense that the exit channel of the reaction is different
from the entrance channel. In general, a reaction consists of both elastic and inelastic
scattering and the interaction potential is complex. The solution of the Schridinger
equation in such a case may still be represented by Eq. (B-8); however, the phase shifts
can now be complex quantities as well.

In order to treat a broader class of scattering problems, we shall write the asymp-
totic form of the modified radial equation u,(r) for partial wave £ in terms of an incoming
wave Z(r) and an outgoing wave O(r),

(1) —=m— Le(r) — eOu(r) (B-38)

in the place of Eq. (B-10). Here 7, the inelasticity parameter, is a way to measure the
contribution of inelastic scattering, as we shall see later. [The definition of 7, here is
a more general one than that in Eq. (3-79), where #; is a real number, equivalent to
the absolute value of 7 here.] Each of the factors in Eq. (B-38) has a counterpart in
(B—lf}),

ne 2161 IE("") -~ E—f(kr—%éw) Of('!') ~ ei(kt'-%fﬁ} (B-39]

The elastic scattering cross section given in Eq. (B-19) may now be expressed as

T ) :
ol . ﬁ2(26.+ DL —ne)*
¢

In addition, there are new terms contributing to the reaction that are not present in
scattering by a real potential.

,i
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One way to see the difference between scattering by a real and a complex potential
Is to examine the intensities of the incoming and outgoing waves for partial wave £,
Using the last form of Eq. (B-10), we obtain the difference as

1= fneft = 1 jebp

If the phase shift &; is real, the difference vanishes and only elastic scattering can take
place. For a complex phase shift, the difference does not vanish in general, as some of
the incident flux is transferred to channels other than the incident one. This part of
the scattering is represented by the “reaction” cross section

0™ = 5 20+ 1)(1 — nf?) (B-40)

The total cross section is then the sum of those due to elastic scattering as well as the
reaction,

o,tot. s O_ei +

T
2 Y20+ 1)(J1— e 1 - [nel’)
Z

e
o

2.’
k—;r S(2¢ 4+ 1)(1 = %) (B-41)
: £

" We may compare this result with the scattering amplitude f(#) at # = 0. From

Eq. (B-16), we have

fo=0)= — i(?ﬂ 1)(e*% ~1) = ﬁi(% B

{2841
4

Comparing this result with the final form of Eq. (B-41), we obtain the relation

where we have made use of the value

Yu (8 = 0)

o= %a‘; f(0) (B-42)

known as the optical theorem.

Reaction channel. To discuss inelastic scattering involving nuclear particles in more
detail, we need to define the concept of a reaction channel Tt is used to describe a
particular quantum-mechanical state of the system either before or after the scattering
event. We shall examine here only two-body scattering, although the formalism itself
can be generalized to include reactions involving three or more particles in the final
state. The labels required to specify a reaction channel consist of three distinctive
parts: those describing the internal degrees of freedom of the projectile or the scattered
particle, those describing the corresponding quantities for the target or the residual
nucleus, and those describing the relative motion between the two. For simplicity we
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shall use a single letter, ¢, the channel quantum number, to represent the complete set
of labels,
¢ = {Jp0p, Jeor; v £m}

where £ is the relative angular momentum and m is its projection on the quantization
axis. The wave function of the projectile {or scattered particle) is represented by Diseran
where j, is the spin and «, represents all the other quantum numbers required to specify
the state for the projectile (or the scattered particle). The wave function of the tarpet
(or the residual) nucleus is given by ;,,,, where j; is the spin and ay represents all the
other labels.

Since there are three different angular momenta involved here, it is useful to couple
two of them together first. For this purpose, we shall define a function,

cb"m = (‘i’j},mp x Tf'f'rjzm}wx

the product of the wave functions of the projectile (or the scattered particle) and the
target (or the residual) nucleus with their angular momenta coupled together to (v, p).
It is convenient to treat the relative orbital angular momentum ¢ separately from the
spins of the particles, as it is not usually observed directly in a measurement. The
identification of one of the two particles involved in the scattering as the projectile
and the other one as the target nucleus before the event, and one of the particles as
the scattered particle and the other one as the residual nucleus after the event, is an
artificial one without much significance in the center-of-mass system we are using here.
To simplify the notation, we have omitted references to isospin.

Scattering solution. Instead of Eq. (B-39}, we shall define the incoming and outgoing
waves in the following way:

1 fyr —ifkr—Yix
Z.(r) ?-_.—18}"?”1(9:4&’)3 (kr—gt }(I]w

Up
1
T

" T |
@Gdry = Yo (6, ¢)e e 2“’}@,’.;‘ (B-43)
where v is the center-of-mass velocity in channel ¢ and is used to normalize the wave
function in terms of probability current density, as we saw in Eq. (B-4). Consider first
the simple case of a definite incoming channel ¢. The scattering wave function for this
incident channel and all possible outgoing channels may be written as

We(r) =T.(r) = > SucOu(r) (B-44)
cf
where Sq,. is the matrix element relating the scattering amplitude from incident channel
¢ to exit channel o
In general, the scattering process is described by the s-matrix (also referred to, on
occasion, as the reaction matrix or the collision matrix). The matrix element,

See = (T ()| S|TN(r))

is taken between wave functions in the incident channel ¢ and outgoing channel ¢/. The
superscripts on the wave functions are to remind us that the solution in channel ¢ must
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be obtained using the appropriate boundary condition for the outgoing wave and that
in channel ¢ for the incoming wave. We shall return to the topic of the s-maftrix in the
final section of this Appendix.

The general sclution of the Schrddinger equation (B-3) outside the range of scat-
tering potential V is a linear combination of those given in Eq. (B-44),

B(r) = 3 CTe(r) = ¥ SecOu(r) } (B-45)
(i} o
where the coefficients C, depend on the initial conditions given by the particular ar-
rangement of the incident beam and the target.

The asymptotic form of the incident wave function, with the projectile described
by $;,a,, the target nucleus described by ¥j,4,, and the two particles approaching each
other along the z-axis with relative wave function described by a plane wave (or a
Coulomb wave if both particles carry charge), is given by

1 s
Vigelr) = ﬁemz‘f’

TH
iL
—=e %Z\/WTUZ;TT{H’”—%“) - ci(kr—%f-,rr)} 0(6)D
P A
- %ﬁ Z \/(QCTU {I{:(f‘quz[]] - Oc{f,m:ﬂ]}
£

in analogy with Eq. (B-12). Tor clarity, in addition to channel guantum number c,
we have also given some of the implied labels explicitly in parentheses as part of the
subscripts. The complete scattering wave function of Eq. (B-45) must contain a term
describing an incident beam identical to that given in Eq. (B-46). Hence Eq. (B-45)
may be written in the form

\IJ(T) —Fees T f\;/% Z Y (?,E + 1) {IC[E,W|=U) - E Sc'c(f,m:ﬂ)c)c’}
* £ ot
e Q\A{T—r Z Vi (2{] + 1){Ic(e’,m={]) = Oc(é‘,mzﬂ) + CJC{I‘,m:U} T Z Sa:‘::{ﬂ?m:ﬂ}(—’)c’}
£ .
= lIJriu(.' (TJ 4 :}_g z Y (2C R 1){Oc(f,m:0} it Z S{:*::(E,m:[])Oc’}
¢ cf

We shall now work out the differential scattering cross section from this expression.

(B-46)

Cross section. Since the incident probability current density is normalized to unity
because of Eq. (B-43), the differential scattering cross section is given by

do T " 4
(_) = 15|22 V(28 + 1) Setetip ttam=viane Yeo(0)
A8/ eyt p g

w

where we have integrated over all the internal variables in the initial state, described by
the product wave function ®.,(juap; jsc), and in the final state, described by the prod-
uct wave function @, (j59:; J-0-). The expression is basically the same as Eq. (B-17)
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except that elements of the s-matrix between incident and final scattering states are
used to replace the phase shifts. The summation over £, the orbital angular momentum
in the outgoing channel, is required since in a scattering experiment only the states of
the scattered particle and the residual nucleus are observed and their relative angular
momentum £ is not usually identified. On integrating over the angles, we obtain the
scattering cross section as

7 o 2 -
Oy = 77 2202+ 1)ISerteras) ot m= | (B-47)
£

in the same way as was done to arrive at Eq. (B-19). The reaction cross section is
represented by terms with exit channels with 7 # o,
For elastic scattering, the amplitude is given by the expression
Tc’[f’m"y"_u’_ﬁ)c(f,m:ﬂ,‘fpa) = 65{’61171.’0677’6;11:’ 6{)3 = Sc{f’m’j"p’ﬁ)C(f,m:ﬂ,"ﬂtn}

which, in its more general form, is known as the f-matrix. The elastic scattering cross
section is then

£ "Tr -_1 o 1 e
O, = 77 2220+ D1 = Seteypo cltm=0.3p0) |
2 <

= é; Z(2£+ l){l - 2m5‘ypa;wm(m=ll) + Z|‘ c:(Ewm)c(f,mEUJ,Uﬂ”z}
% 5 7
(B-48)

We can recover from this the relation given by Eq. (B-41) [or total scattering cross sec-
tion by adding to Eq. (B-48) the contribution from the reaction cross section contained
in BEq. (B-47) and summing over all possible exit channels,

o i 1 2
J;ut&:wcr = ;_2 Z(% + 1){1 - 2%*55("-711“)C(E.mﬂﬂ.“r.uﬂ) iF Z |SC’(f’"r’.r='ﬁ)C(f,m=0.wﬂ)] }
v I 8"'}"#‘}3

Becanse of the unitary property of the s-matrix,

Z |‘S'(:’(f"}"p',-'3] C(f')‘pcr}|2 =1
L

where the snummation is taken over all the possible channels, we have the result
2
t s ;
O—’r‘::c\rrpcr T 2(2{" + 1){1 - iR*S'C(f"l'.u‘i'f)L‘(f’?f.“ﬂ)}

From this we obtain again the optical theorem in the same way as was done in deriving
Eq. (B-42) from (B-41).

B-5 Coulomb Scattering

The discussions in §B-2 and §B-3 apply only to short-range potentials. For nuclear
scattering this is quite adequate except for the electric charge carried by the partici-
pants. The Coulomb potential between two nuclei with charges Zie and Zye is given
by

= afic

i = [ | e

41mey

Z1Zy
T

r
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where the factor inside the square brackets converts the expression from cgs to SI units.
Since the range of this potential is infinite, the techniques employed in §B-2 to find the
scattering solution no longer apply. This is not a problem, as exact solutions are
available (see, e.g., Messiah [104], Morse and Feshbach [106], and Blatt and Weisskopf
(32]). A short summary of the results is given here.

For scattering involving only Coulomb potential, the Schridinger equation can be
written as

2k
{vrere -2y =0 (B-49)
where
k2 - 2,uE ; ZJ_ZQQ’}’LC

The regular solution of Bq. (B-49) has the form
B(r) = e f(r - 2)

where
kz=krcosfi=k 1

The function f(¢) satisfies the differential equation,

& d .
G+ -0 +ir} O =0

with
¢ =ik(r—2z)

It is a type of Laplace equation,

a2 d
— 4 (f—u)— - =0
{ud.'u.z + (B —u)— Ck}f:(%)
with solution involving the confluent hypergeometric series

P au  ofa+1)u?
Flalfl) =1+ 25+ 371 3

The normalized Coulomb wave funetion is then
Ye(r) = eFI(1 + i)e F(—in|1|ik(r — 2))

The definition of the gamma function I'(1 + ¢y} and its properties may be found in
Abramowitz and Stegun [2].
At the origin, F'(e|flu) = 1 and only the normalization factor remains,

$:(0) = e 31 + i)

Using the identity that
x i

(1 +iy)f =
P )] sinh 7wy
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we obtain the result
2oy

[0 =
This gives the Fermi function #(Z, E.) of Eq. (5-67) for nuclear S-decay in the limit that
the charge disiribution in the daughter nucleus can be considered to be concentrated
at a point located at the origin.
For scattering, we are more concerned with the asymptotic behavior of the wave
function. As in Eq. (B-5), we need the values at large distances away from the origin
and expressed as a sum of incident wave 4;(r)} and scattered wave o,(r),

(B-50)

Ye(r) = () 4+ b (7)

For |r — z| — oo, we have the result
iz In k(r—z)} i
i .y pitkrtyink(r-:z 1+___

j L oifkr—ylngke} pe 5
de(r) T () 4 O

The Coulomb scattering amplitude f<(f) is given by

¥ iy ln(sin? 1g)+24¢
¢f) = — '1{1( nisin 7 1+ 0}
e 2ksin” 16

where
& = arg D(1 + i)

is the Coulomb phase shift for £ = 0. Using this result, we obtain the Rutherford
scattering formula
(dcr) _{ L1 Zyafic }2
dQ/ . \4Esin?(9/2)

This is the same expression as Eq. (4-7) except, here, the kinetic energy is represented by
the symbol [ to conform with the general practice in nonrelativistic scattering, rather
than T in Eq. {4-7), where we need to make a distinction from the total relativistic
ENETEY.

We can also make a partial wave expansion for the solution to Eq. (B-49) in a way
similar to that given in Eq. (B-8). Let

€
. i
Welr) =20 /4w (204 1) - ug(r)Ya(0)
£
The modified Coulomb radial wave function u§(r) satisfies the radial equation

d* 2y HL4+1) .
where p = k7. The solution of this equation may also be expressed as a sum of Fy(, p)
and Gy, p), the regular and irvegular Coulomb wave functions (see, e.g., Abramowitz
and Stegun [2]),

ug(p) = C1Fe(, p) + CoGel(v, )
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However, for scattering problems, it is more convenient to use

ug(r) = et Fy(y, p) (B-51)
where
by = arg (¢ + 1 + i)
is the Coulomb phase shift for partial wave £.
Asymptotically, the Counlomb wave function has the properties

Fo(v,p) —==— sin& Ge(V,p) —=m— COS&

where
e=p—71n2p— 3fr + 6

Applying this result to the right-hand side of Eq. (B-51), we can write the asymptatic
form of the modified radial wave function in a manner similar to the final form of
Eq. (B-10)

1

641
i SO e P R i
'U,E(T‘) e o {E ifkr—yIn2kr)) E..uﬂ( e:[iﬁr ¥ In 2k t’."r})}

From this, we obtain the Coulomb scattering amplitude in terms of the phase shifts

o 1 II & s
Fey= 2ik > fam(26 4+ 1) (2% — 1)Yi(8)
e
similar to that given in Eq. (B-16).

B-6 TFormal Solution to the Scattering Equation

There are two reasons to have a short discussion here on the formal solution to the
scattering equation. The first is to define some of the terminology commonly used in
scattering and related problems. The second is to make a connection with methods
used in standard references on nuclear scattering,

We shall write the time-independent Hamiltonian as

H=Hy+V (B-52)
Normally Hy consists of the kinetic energy operator only,
BE_;
Hy= ——? (B-53)
2

as in Eq. (B-2). However, we may also choose to include in Iy a part of the interaction,
such as that due to Coulomb force or the optical model potential, as we did in §8-4.
The potential V in Eq. (B-52), then, represents the residual wnteraction, the remainder
of V' that is not already included in Hy. For our purpose here, we shall further assume
that any long-range part of the potential is included in Hy.
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The eigenfunction of the scattering equation is the solution of the equation
(Ho — BYOE(r) = Ve (r) (B-54)

where the superseript + on (r) indicates that the solution satisfies outgoing boundary
conditions and the superscript — refers to fncoming boundary conditions. Our concern
will be mainly with the former. The subseript k, with magnitude k£ = V2l [T, displays
the explicit dependence of the solution on energy.

The solution of the homogeneous equation

(Ho— E)¢e(r) =0 (B-55)
forms a complete set satisfying the orthogonality condition

f S (r)bi(r) dr = 8k — k)
and having the closure property

[ #ir)on(r) dke = 6(r ")

For the simple case of Eq. (B-53) for Hy, we have plane waves, ¢i(r) ~ exp(ik - r), as
the solution for Eq. (B-55). On the other hand if, for example, the Coulomb potential is
included as a part of Hy, we have the Coulomb wave functions as the solution instead.

Green’s function. Using the method of Green's function, the solution of the scattering
equation may be expressed in terms of an integral equation

s 2p ;

V) = du(r) + 35 [ @)V () drf
The first term is the solution to the homogeneous equation of Eq. (B-55). The Green's
function G*(r,r") in the second term satisfies the equation

2
(Hy— EYGT(r,7) = -;i-é'(r - ')

i

(B-57)

with outgoing boundary conditions. In the simple case that Hy involves only the kinetic
energy, as given in Eq. (B-53),

. “ 1 e£k|r—r'| _—
el -
(re) dar e — 77| (B-58)
We shall use this simple form of the Green's function exclusively for the examples below.

It is easy to check that i} (r) given in Eq. (B-56) is a solution to (B-54). On
applying Hy — E to both sides of Eq. (B-56), we obtain the result

(Ho — B0 () = (Ho = E)ou(r) + 25 (Ho = B) [ G*(rr )V (s ()

The first term on the right-hand side vanishes because of Eq. (B-55). For the second
term, since Hy — E operates only on variable » and not on #', we may bring the operator

§B-6 Y¥ormal Solution to the Scatterin
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inside the integral without changing the final result. Furthermore, since r appears only
in G(r,v'), we obtain, using Eq. (B-57), the result

(Ho— Byt (r) =~ [ 8(r— )V (' Wit () v’ = V()i (r)
the same equality given in Eq. (B-54).

Scattering amplitude. It is casy to see how the scattering amplitude may be obtained
from Eq. (B-56) using the explicit form of the Green’s function given in Eq. (B-58).
Let # = r/|r| be a unit vector along direction ». In the asymptotic region,

|r—r| =5

since the integral over v is effective only in the region of small ' where the short-range
potential V(') is nonvanishing. As a result, we may approximate the Green's function
of Eq. (B-58) as

1 P‘a'kr'

GT‘("":"'?) et T T

1 e'f.kr

g ()

pikirt _
dr r dr r

where we have taken k' to be along the direction of #+. Equation (B-56) is now reduced
to
ihr

] € nI't' * ! !
W) = oulr) = L5 [ Gp (e )V (it () o (B-59)
Comparing this result with Eq. (B-5), the scattering amplitude is identified as
H " ‘ By . -
1) = 5t [ W) ar =~ Loteu Vi) (B60)

The result here is an exact one (in the asymptotic region) and is different from that of
the first Born approximation given in Bq. (8-22), as 4, the solution of the scattering
equation Eq. (B-54), appears in f(€) in the place of ¢. The differential scattering cross
section is then '

do u?

75 = O = Tz (b VI
gl 4d72h

The usefulness of this expression is limited, as it requires a knowledge of it ('), the
complete solution to the scattering problem.

The result given by Eq. (B-59) is an integral equation, or “formal.” solution of
the scattering equation, as ¥y itself appears on the right-hand side as well. Tts value
lies mainly in analytical works, such as a Born series expansion of the scattering wave
function and scattering amplitude. To simplify the notation, we shall write Eq. (B-56)
in the following way:

Yy = ¢, + GV (B-61)
where, instead of G*(r, '), we have used G*, an operator for the Green’s function
defined by the relation

GF(r,r') = {r|GT|r')



432 Appendix B: Scattering by a Central Potential

In terms of Hy and £, the Green’s function operator Gt may be expressed as

(B-62)

Gt =lime——

e—0 f — Hy+ e

where the factor -+ie, with ¢ as some small positive quantity, is required to ensure

that the operator corresponds to the outgoing boundary condition. The derivation

of Bq. (B-62) may be found in quantum mechanics texts such as Merzbacher [103],
Messiah [104], and Schiff [125].

Lippmann-Schwinger equation. 1t is easy to sce that Eq. (B-62) is correct by
substituting it into Eq. (B-61). The result

1
Vi

i+
] Y sy
Y (‘bk E—Hu+?-€

is one way to write the Lippmann-Schwinger equation. The equation may be reduced
to a more familiar form by operating from the left with £ — fI + ic and taking the
limit € — 0,
(B — Ho)yg = (E = Ho)dw + Vi

The first term on the right-hand side vanishes because of Eq. (B-55) and the rest of
the equation is identical to Bq. (B-54).

If we replace } on the right-hand side of Eq. (B-61) by its value in the same
equation and repeat the process, we obtain an infinite series expansion of ¥y in terms
of ¢,

Y = o+ GV (g + GV

= ¢+ GV +GVEV (b + GV

o0

= (1+ 2@V

n=1

(B-63)

This gives us a Born series expansion of the scattering amplitude if we substitute the
expansion for ¢} into Eq. (B-60).

t-matrix. We have scen earlier that the scattering amplitude (—pu/27h*) (dp |V W)
given by Eq. (B-60) is not nseful directly for calculating cross sections because of its
dependence on -':_,-",';:. For many purposes it is more convenient to define a transition
mabrix, or t-matrix, satisfving the relation

(g ltlon) = (| VIvE) (B-64)

In terms of the t-matrix, the scattering amplitude is a function of matrix elements
involving only ¢, the solution of the homogeneous equation given in Eq. (B-55). Again,
this is useful mainly for formal work, as the t-matrix itself cannot be written down unless
we solve the scatiering problem first. For the simple case of H, consisting of the kinetic
energy operator only, the elements of the t-matrix involve only plane wave states.

§B-6  Formal Solution to the Scatter

Using the series expansion of LR
the tmatrix as

(Dw [tlpe) = (.

Since the equality holds for arbitrar
operators involved,

=V

This can be put in a more compact fc
we can take one product of Gt with |
1n the form

L=V AVGHY + VY 3
n=1
The quantity inside the curly bracket
and we obtain the result
f=

a form that is convenient as the starti

s-matrix. The s-matrix may be expr

(ﬁ‘ﬁpl‘s!@q;\' = 0y,

The definition of the s-matrix ig usu
operator U(t,4y) in the interaction re
Sakurai {121] and Schiff [125]).

For most elementary applications,
state is expressed in the Schrédingef
independent; all the time dependence
Eq. (B-1), we obtain the result

d
TR
natlﬁ

where the subscript s eniphasizes that
sentation. To simplify the notation, we
Alternatively, one can work in the Hei
wave function is time independent and

In the interaction representalion, th
operator and partly in the wave fLLn(;tio

Fi

Wave functions ¥(¢) and operators ot
the Schrédinger representation through

T(t) =
O(t) =



3: Scattering by a Central Potential

i Gt may be expressed as
P (B-62)
- i€

ive quantity, is required to ensure
yundary condition. The derivation
cs texts such as Merzbacher [103],

see that [q. (B-62) is correct by

._V'q{:"-'
: gy
1€

tion. The equation may be reduced
ft with E — Hy -+ ie and taking the
b + Vit

weause of Eq. (B-55) and the rest of

lq. (B-61) by its value in the same
mite series expansion of iy in terms

W)
V(e + GV

(B-63)

tering amplitude if we substitute the

: .2 A+
ing amplitude (—pu/2mh? ) (dpe| V1)
culating cross sections because of its
ore convenient to define a transition

VIl (B-64)

nde is a function of matrix elements
s equation given in Eq. (B-55). Again,
‘ix itself cannot be written down unless
ple case of Hy consisting of the kinetic
ix involve only plane wave states.

§B-6 Formal Solution to the Scattering Equation 433

Using the series expansion of ] given in Eq. (B-63), we can write the elements of
the t-matrix as

(Gultigd = (BIV(+ 3GV i)

Since the equality holds for arbitrary ¢y and ¢pr, we obtain a relation between the
operators involved,

==}
t=V({1+ Z(G'*V)“)
n=1
This can be put in a more compact form. Since the summation is taken up to infinity,

we can take one product of G+ with V' out of the summation and rewrite the equation
in the form

t=V+VGEV4+Vatv 3GV =V + VG“L{V +V Z(G':"V)"}
n=1 n=1
The guantity inside the curly brackets is nothing but the transition operator t iteelf,
and we obtain the result
t=V+VG't

a form that is convenient as the starting point of many other derivations.

s-matrix. The s-matrix may be expressed in terms of the f-matrix using the relation
(0p] S|y} = bpg — 2mib(E, — E,) (".ﬁ’;rr|t|¢q)

The definition of the s-matrix is usually introduced through the time development
operator U(t,ty) in the interaction representation of quantum mechanics (see, e.qg.,
Sakurai [121] and Schiff [125]).

For most elementary applications, the time dependence of a quantum-mechanical
state is expressed in the Schrédinger representation. Here, the operators are time
independent; all the time dependence resides with the wave functions W,(¢). Using
Eq. (B-1), we obtain the result

m%WAQ:HQJQ (B-65)

where the subscript s emphasizes that the wave function is in the Schrédinger repre-
sentation. To simplify the notation, we have suppressed all arguments other than time.
Alternatively, one can work in the Heisenberg representation wherce, in contrast, the
wave function is time independent and all time dependence is built into the operators.
In the interaction representation, the time dependence of a system is partly in the
operator and partly in the wave function. The Hamiltonian is divided into two parts

H=Hy+H,

Wave functions ¥(¢) and operators O(t) in this representation are related to those in
the Schrodinger representation through the transformations

U(t) = eHot/hy (1) (B-66)
O(t) — ﬁ.&f{g]i;’flose—iﬁg”ﬁ (B_G?)
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As a result, the time development of a state in the interaction representation is given
by the equation
&
ma\ﬂ(t) = H,(t)¥(z)

as can be seen by substituting the inverse of Eq. (B-66) into (B-65). TFor many pur-
poses, such an approach can be simpler than working in the Schrédinger representation,
especially if H; is only a small part of the complete Hamiltonian.

We can now define the time development operator U{fy, f) that takes a state from
time fy to time ¢ in the interaction representation

(1) = U(t, to) T(ty)

On substituting this definition in to Egs. (B-66) and (B-67), we obtain an equation for
Ufta, t),
d
i!iéth(t, to) = H,(£)U(t, ta)

The solution of this equation may be given as an integral equation,
t
Ut t0) = 1 — ik [ H,()U(L, to) dt
tg

The s-matrix operator is defined by the following relation:
S= tgiﬂ U(t} t{)

It is easy to sce that the matrix elements of operator S between specific initial and
final states are proportional to the scattering amplitude, as both quantities are related
to the probability of finding a system in the final state at t = 400 if it started out from

an initial state at ¢ = —oc.
In terms of phase shifts, the element of the s-matrix for partial wave £ is given by

(01S]6) ~ ¥
The analogous relation for the t-matrix element is
(€[t]) ~ e sin 6

The advantage of using the s-matrix for scattering problems is its unitarity and other
symmetry properties that are convenient in more advanced treatments.
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