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CHAPTER ].

The Constituents
of the

Nucleon

1.1 INWARD BOUND

Scattering experiments have played a decisive role in unravelling the struc-
ture of matter. A fascinating account of our understanding of matter and
forces in the physical world is given by Pais! in his book “Inward Bound”.
Pais recounts the recorded reaction of Rutherford to the observation of
back-scattering? of a-particles (about 1 in 8000) by a thin gold-foil: “It
was quite the most incredible event that has ever happened to me in my
life. It was almost as incredible as if you fired a 15-inch shell at a piece of
tissue paper and it came back and hit you”. That was when the atomic
nucleus was discovered. Sixty years later, history repeated itself when a
SLAC-M.LT. team of scientists performed? inclastic electron-proton scat-
tering with incident electron energies between 7 and 17 GeV at the Stan-
ford linear accelerator. In the reaction e + P — ¢’ 4+ X, thev only counted
the number of outgoing electrons ¢’ at 6° and 10° angles, leaving the de-
bris X unobserved. Such cross-sections are termed “inclusive”. To their
surprise, the experimenters observed hundreds of times more counts at
these angles than expected. In elastic scattering ¢ + P — e’ + P/, the out-
going particles are the same as the incoming ones, and the cross-section
falls-off very fast as a function of the scattering angle due to the finite




2 1 The Constituents of the Nucleon

size of the nucleon. The orginal experimental result, shown in Fig. 1.1,
indicated that in high-energy inelastic scattering, the incoming electrons
occasionally hit hard point-like constituents inside the proton, just as in
Rutherford’s experiment the incident a-particle was sometimes scattered
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Figure 1.1 Deep inelastic electron-proton scattering (Ref. 3). The double dif-
ferential inclusive cross section, divided by the Mott cross section for elastic
-~ scattering from point particles, (%0 [dQdE’) /oo, s plotted as a function
of the four-momentum squared, Q2. The process is depicted in Fig. 1.2 . Note
that Q2 = 2EE'(1 ~ cos8), where E, E' are the energies of the incident and
scattered electron, and # is the scattering angle. The data are shown for various
values of the invariant mass of the recoiling target system, W, and compared
with the elastic cross section which falls off much more rapidly. See text for more

details.
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q = Pe ~ Pe’

hadrons .
Y .
Figure 1.2 Feynman diagram for deep inelastic electron-proton scattering. The
four-momenta are labelled on the diagram, with ¢ = (P, — L).

by the atomic nucleus. To elaborate a little more on this point, consider
the elementary process

e+ Poe+X (1.1.1)

as depicted in Fig. 1.2 . Such Feynman diagrams will be used throughout
the book. In quantum field theory, there are well-defined rules of writing
down the matrix-element of a Feynman diagram. We have labelled the
four-momenta of the incoming and outgoing electrons by p, and p. and
the four momentum of the target proton by p. All leptons, so far as we
know, are point-like Dirac particles. A proton, on the other hand, interacts
strongly and has an internal structure of its own (like other baryons and
mesons). This is shown by a dark blob at the proton vertex in the figure.
Throughout this book, we use tha Bjorken-Drell convention of the metric,
and natural units & = ¢ = 1. (The reader unfamiliar with this should first
read the Appendix). In a deep inelastic process like (1.1.1), where a large
amount of energy and momentum has been transferred to the target, the
proton breaks up into hadrons X. The four-momentum transfer from the
electron to the target is
g =pe—Pe-

Now, the central point is the following. In an inelastic process like this,
there should be two independent variables, the energy loss (E, — E!)and
the three momentum transfer q on which the inclusive scattering cross-
section should depend. Instead, it is found that the cross-section depends,
to a good degree, only on one variable z = (Q?*/2Mv), where Q? = —¢2,
and v = E, — E! in the labratory frame. This is the signature of an
elastic scattering of the electron from a free, point-like constituent that is
carrying a fraction z of the four momentum of the proton. This is called
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“Bjorken* scaling” because the measured cross-section, at @2 and v, is
the same as the cross-section at Q2 and o/, provided the variables are
scaled as )

=07
It is this observation of scaling in the original experiment that implied
the existence of the point-like constituents of the nucleon, called partons?.
The experiment also pointed to what is called “asymptotic freedom” —
that for large Q?, the partons seem to be moving freely of each other
— interacting only weakly. The rush was on for the search of a theory
of strong interaction that waned in strength at shorter distances — and
QCD, (Quantum chromodynamics) came along.

(1.1.2)

t‘|§

Exercise 1.1

(a) Consider Fig. 1.2 . From the definition of the four momentum p, we
have
PP =p-p=py—p-p= M.
Show that the four momentum transfer g = (pe — p.) obeys the equa-
tion (6 is the scattering angle)

¢* = —4E_E! sin? 6/,

provided that E,, E! > m,, the rest mass of the electron. For a real
photon, ¢* = 0. A virtual photon is characterized by ¢2 # 0. For
¢® < 0, as in this case, it is called space-like, and for ¢2 > 0 it is
time-like. '

(b) Consider the elastic scattering process e + P — e + P’, as shown in
Fig. 1.3 . Show that now ¢ = —=2p - q. In the labratory frame, the
proton is at rest, and in this situation prove that

2
T = Q =1 ,
2Mv

where
2 .
Q*=-¢* , and v=E, ~E!.

To appreciate the significance of the scaling variable z = (Q%/2Mv),
assume that the proton is made up of point-like constituents, each having
a mass m, and carrying a fraction £p of its momentum (see Fig. 1.4). A

;
i
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p
Figure 1.3 Elastic e- P scattering.

constituent absorbs the virtual photon of momentum ¢ and gets scattered
elastically. In practice, since it is part of a bound system, and interacts
with other constituents, its momentum would be smeared to some ex-
tent, and the encounter is “quasielastic”. Ignoring such effects, the four
momentum of the struck parton is (€p + ¢), and N Lal,

E‘M.‘_ :)—? ’JfM") 4-0 .
(ép+ q)* = m?,

Q?

622(1"4) '

This is a Lorentz-invariant quantity, and may be evaluated in any frame.
In the labratory frame, p- g = Mv, and we see that

N

Figure 1.4 The scattering of a parton in the nucleon via a virtual photon
absorption.
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2 2
¢ __ o _,

2p-q) 2Mv
When the conditions Q2 and Mv > M? are met, the process is called
deep inelastic, and we may identify z with the fractional four momen-
tum £. This will have important implications in the interpretations of the
data. In Fig. 1.4, the struck constituent cannot get loose by itself, unlike
in nuclear physics where a nucleon, as a constituent of a nucleus, may be
knocked out. The free partons are never seen in isolation, so the under-
lying theory, in addition to being asymptotically free, must be confining
the constituents. The constituents and the quanta that they radiate and
exchange carry color charge in the theory, and it is arranged that only
color-neutral objects may be free. The struck constituent in Fig. 1.4, in
stretching out to longer distances, will drag the others with it due to
this confining mechanism. It will also create other (¢9)-pairs from the
vacuum to use up the energy deposited by the scattered electron. The
(color-neutral) hadrons that are formed will come out in a jet following

the trail of the struck parton, as shown shematically in Fig. 1.2 .

Before getting a little more quantitative, it is worth recounting an-
other set of experiments®® with incident neutrinos and antineutrinos that

were even more spectacular in import. In the deep inelastic processes

(1.1.3)

Vy+ N —p= + X

V,+ N —ut+X (1.1.4)
the total inclusive cross-section was measured (identifying the outgoing
muon in a giant bubble chamber). A burst of ~ 10° v, or i, (from decay
of 7t —» ut +uy, 0 77 - p= 4 7,) at intervals of a few seconds tra-
versed several detectors placed in series. Typically, the energy of the »’s is
~ 200 GeV, although in the original experiments at CERN and Fermilab
the energies were much less. In every burst, a handful of the neutrinos
undergo the interaction (1.1.4) in the bubble chamber. A very readable
account of these experiments is given in a popular article by Perkins’. The
spectacular linear rise in the total cross-section o(vN)or o(#N) with the
incident energy is shown in Fig. 1.5 . This is again a signature that the
v (V) is getting elastically scattered by point-like objects in the nucleon.
Such rising cross-sections are observed, for example, in the elastic colli-
sions of v, on electrons. A lepton-lepton scattering is mediated by the
exchange of heavy bosons (W and Zg), and may be considered to be
due to zero-range weak interactions. The Coulomb interaction between
two charges e in momentum space is €2/47¢2. For weak-interaction, we

e

gt

e

o« et R

g e
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may replace e by a weak dimensionless charge g, and ¢? in the denomi
nator changes to (¢ — M%,). (A more sophisticated account is given in
Sect.lOIl 5.3). For M2, > Q2. the net result is a couplin cons!:g t Gm
(F is after Fermi) with dimensions of M~? (i.e., L?) ii orrange
interaction®. The experimental value of G is foun.é to be @ rereTnee

12 _ -
GpM? = (1.026+0.001) x 107° . (1.1.5)

We sh(?w the zero-range interaction in the Feynman diagram of Fig. 1.6
Thlere xr;Ino unknown “blob” at the vertex because leptons are poini p.ar.
ticles. The total cross secti i i |
i ion, on dimensional ground alone, should go
o(v,e”) ~ Gs (1.1.6)
where s = (p, +pe)2. ’ljhis is so since the amplitude of the diagram o< G
and. the cross sec'tlon is obtained by squaring the amplitude and mulg-,
plying by the available phase space. The quantity s is the only Lorentz-
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8 1 The Constituents of the Nucleon
invariant nonnegative variable in the incoming channel, and enters in the
phase space calculation. Note in (1.1.6) that o has the correct dimension
of L2. In the Labratory frame (electron at rest)

s=pe+pi+2p,-Pex2E,m,

so the linear dependence in o is obtained. This is why the linear rise in
o(vN) or o(7N), shown in Fig. 1.5, is so informative. The neutrino does
not regard the nucleon itself as a point. Indeed, from reactions like

v, d— 1 pp

the axial size of the nucleon may be deduced (see Fig. 2.12). It must,
therefore, have point-like constituents. More may be learnt by noting, in
Fig. 1.5, that o(v, N ) is more than twice as big as o(#,N) at a given en-
ergy. Indeed, in the electron-neutrino problem, the same trend is observed,
and the cross-section o(v,e™ — vee~) is three times o(7,e~ — D e ). This
is because the struck electron is a Dirac spin-% particle, as are the v, V.
The helicity of the particles in the interaction is conserved and a (V — A)
theory yields the factor-of 3 casily (see Section 2.6, 2.7 and ref. 9). In the
inelastic (¢vN) scattering, o(v,N) is not quite three times (7, N), but
the difference is due to some other degrees of freedom like the ¢g pairs in
the nucleon. These may arise from the “gluons” that arc emitted in the
bremsstrahlung of the spin—% contituents. If the point-like constituents off
which the v (7) scatter had any other intrinsic spin, o(¥,N) = o(v,N).
Thus the experiments involving neutrino’s tell us of point-like spin-% con-
stituents inside the nucleon. To delve a little more, we must now learn

e e’
Figure 1.6 Electron-neutrino scattering due to an effective zero-range interac-

tion
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1.2 Form Factors and Structure Functions g

about elastic form factors and inelastic structure functions of the nucleon,
which we proceed to do in the next section. One may then deduce from the
experimental data that the spin-1 constituents (including the ¢g sea) only
carry about 54 % of the proton’s momentum. It is inferred that the quanta
of the color field, gluons, must be carrying the rest of the momentum. The
gluons do not interact directly with any colorless object like electrons or

neutrinos.

1.2 FORM FACTORS AND STRUCTURE
FUNCTIONS

In this section we briefly review some aspects of the above topics that are
relevent to the study of nucleon structure. The subject of deep inelstic
scattering and structure functions has been covered very well in texts
by Halzen and Martin?, aud in Close!®. We start with elastic electron-
proton scattering. In nuclcar physics, this has been very fruitful in giving
the profiles of the charge distribution of nuclei’!. Consider the elastic
scattering of an electron from a static, spinless charge distribution which
is taken to be infinitely heavy. The target does not recoil and is not
internally excited and so cannot absorb any energy. In this situation (see

Fig. 1.3) ( oo o
Pe = Pe

Q*=4q°.

The elastic differential cross-section of the electron is given by

d0> (da) g2
7Y =159 |Fi(q)l
(dQ cP—eP dQ Mott ‘

The cross section (?%)Muu. is what one would get from a spin-less point
charge, and its expression will be given shortly. The information of the
charge distribution is contained in the form factor F(q), given by

(1.2.1)

F(q) = /p(r)e’q'rd3r (1.2.2)
where p(r) is the charge density with the normalization [ p(r) d* = 1.
The most interesting point here is that the differential cross-section has a
diffraction pattern as a function of |[q] or § 1fp(r) has an edge or a shoulder
at the surface. The other interesting point is that |F(q)|? falls off very
rapidly with %, and more so for a bigger size. For a point distribution,
of course, F(q) = 1.
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Exercise 1.2 .

(a) Consider a spherically symmetric uniform charge distribution with a

sharp edge at the surface at 7 = R, i.e.,

p(r)=ps , TSR ; p(r)=0 for r>R.

Show that

F(QY) = ‘T [sin(@R) - (QR)cos(QR)]

(b) Next take a smooth charge distribution

3
m> _
pr) = 8 *

F(Q*) = (1+ %>_2 -

e that for large R (or small m)

mr

Show that

This is called the dipole form. Not
F(Q?) falls off faster.

These point are well illustrated in nuclear form-factors. The charge
form-factor of the *He nucleus is shown!2?in Fig. 1.7, and has an oscillatory
pattern. In contrast, the deutron charge form-factor has no such undula-
tions and falls off smoothly?3. (Actually the “charge” form factor plotted
here also contains a small magnetic contribution). We shall see that for
the proton F(¢?) looks more like the deutron than 3He, indicating that its
charge distribution has no shoulder or edge. For the elastic e P-scatering of
Fig. 1.3, the differential cross-section is given by the Rosenbluth formula,

do do L, Gf‘*’ TG}I\):V Pz,..2b

a0 =14Q e et 2 1 z

<dQ> eP—eP (dQ> Mott E [ (1 + T) t T(GM) an 2] »
(1.2.3)

e in the labratory frame,

€

where 7 = Q?/4M3, 0 is the scattering angl

i
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Figure 1.7 The charge form factors of (a) 3He and (b) deuteron as a function
of four-momentum Q? in fm~2. Note that Q? = 25fm~2 corresponds to only
about 1 GeV?. For references to experimental data, see S. Platchkov, Nucl.
Phys., A446, 151c (1985).

and GE(¢?) and G¥1(g?) are the electric and magnetic form-factors of the
proton. The same formula holds good for the neutron, with appropriate
form factors G%, G7y- The Mott cross-section, (g%)Mm, forincident E, >
m,, corresponds, as before, to the scattering from an infinitely heavy spin-
less point charge (here Z = 1):

2
(ilﬂ) - (1.2.4)
dQ) o 4EZsintéf,
Note that the elastic form-factors in Eq. (1.2.3) depend only on one vari-
able ¢°. The Rosenbluth formula ( 1.2.3), derived under the one-photon-
exchange assumption, fits the experimental points very well. The magnetic
moments of the proton and the neutron are known extremely accurately
from experiments with real photons (¢ = 0), and G’fl(O) and G'f\V,(O) are

normalized to these values:
GH(0) = up = 2.7928
;tvf( )= up Ko (1.2.5)
Gum(0) = pn = —1.9131 y, .

We have rounded off these values of pp and upn at the fourth decimal
point. The nuclear magneton is always defined as o = e/2Mp, where
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12
e charge and the mass of the proton. From Eq. (1.2.3),
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G%,. The experimental points for

fixed 7 = O /4 M} yields both G% and Giy-
G’E(qz) are shown in Fig. 1.8 . A comparison with the deutron (Fig. 1.7)
shows that it falls off much more slowly with Q?. The proton form factor

may be fitted well by the dipole form (see Ex. 1.2 (b))

2 -2
Gh(¢D) = (1 . ) I 1.2.6
£(@") 0.71 ( )
The mean-square charge radius is defined by
(1.2.7)

dGE
(7‘2>charge = —6(W>

dipole-form (1.2.6),
determine the root-me

Q2=0 ‘

which is only an overall fit

an square charge radius.

One should not use the
to

with one parameter,

de—o8 10 12 4
. A
v AT {«rﬁ

G}E, of a proton plotted as a functio
The experimental data

] 0.2 04
n of

Figure 1.8 The elastic form factor,
fit (Eq. 1.2.6) is shown

Q2. The dipole
is from S. Blatnik and N. Zovko

for comparison.
39, 62 (1974).

Acta Phys. A ustriaca,

§

e

TSR A N
T

1.2 Form Factors and

The latter is very sensiti
yields the resultl4

——

:Although the electric an
inaccurately extracted f;
dius is well determined!
electrons:

(ry

The negative sign is int

derance of negative elec
not discuss the

poor d

that!? ™

1

e

The electric form factor
Q?in Fig. 1.9 .

'Ijhe electric form f:

‘relat.lon to the vector-dos

in Fig. 7.4 . For complet.

radius??,

v

It should be realized

on the probe. For an elec
that is obtained. Bu »
x}etica,lly, but rather v, t
hkfa v,d — ppu~, the ax3
axial r.m.s. radius of the

(A

which is substantially sm
rglean square radius of th
2gs. (1.2.8) and (1.2.9),

won I}I(;)w we come to ine
sidered in Section 1.1




The Constituents of the Nucleon

of the proton. From Eq. g 1.2.3),

1042 against tan® /2 for
N QT Mottt e for
¥ he experimental points

rison with the deutron (Fig. 1.7)
with Q2. The proton form factor

ce Ex. 1.2 (b))

¢ )‘2 (1.2.6)
0.71

~d by

(,E) . (1.2.7)
1Q2 Q=0

.2.6), which is only an overaclll. fit
root-mean square charge radius.

55 o) 12 L4 1.6

VRV
b ] h

for comparison. T

Phys. Austriaca, 39, 62 (1974).

of a proton plotted as a function of
e experimental data

1.2 Form Factors and Structure Functions 13

The latter is very sensitive to the slope at Q? = 0. A very careful analysis
yields the result!4

()" = 0.862 (12)fm . (1.2.8)

Although the electric and magnetic form factors of the neutron are rather
inaccurately extracted from electron-deutron data, its electric charge ra-
dius is well determined!® from the scattering of slow neutrons off atomic
electrons:

("2 charge = —0.1192 (18) fin? . (1.2.9)

The negative sign is interesting, and may be interpreted as the prepon-
derance of negative electric charge in the tail of the ditribution. We do
not discuss the poor data in the neutron form factor, except to point out
that!! :

. 1
o Ch(e") ~ ;G,’\'}(qg) ~ Gh(¢?) . (1.2.10)
n p

The electric form factor of the neutron!®, G%, is shown as a function of
Q?%in Fig. 1.9 .

The electric form factor of the pion is discussed in Section 7.1 in
relation to the vector-dominance model. The experimental data are shown

in Fig. 7.4 . For completeness here we only quote the experimental r.m._s.
radius!?,

(P20 e = (0.66 £ 0.01) fin (1.2.11)

It should be realized that the size and the density of a hadron depends
on the probe. For an electromagnetic probe, it is the electric charge radius
that is obtained. But a probe like a neutrino does not interact clectromag-
netically, but rather by the weak current (see Section 2.7). From a reaction
like v, d — ppu~, the axial form factor is determined (see Fig. 2.12). The
axial r.m.s. radius of the nucleon is found to bel!®

2 l/2 ¢y R . ‘ «
("N ) axiad = (0.68 + 0.02)fm |, (1.2.12)
which is substantially smaller than the electric charge radius. The isoscalar

mean square radius of the nucleon is a sum of (73 +(r2)y), and from
Eqgs. (1.2.8) and (1.2.9), is given by

(P2 e = 0.79fm | (1.2.13)

Now we come to inelastic electron scattering off a nucleon that was
Considered in Section 1.1 . With increasing beam energy, the nucleon may
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ref. 16).

then decay strongly to

o its resonant states which
on breaks up into a jet

get internally excited t
ter beam energy, the nucel

hadrons. With still grea
of hadrons, as described earlier (see Fig. 1.2):

et P—e+X

X stands for the hadrons. To find the inclusive double differential
cross-section, one counts the scattered electrons ¢ between the scattering
angles 6 and 8+ 50 in the energy range E!and Ec+ §E!, without worrying

about the hadrons X. The formal expression fo
cross-section?? of deep inelastic scattering looks very sl

Rosenbluth formula (1.2.3);

d*c do P , . , vo
{dEédQl Pses = (dﬂ MO“[W'z v, Q")+ owF(v,Q%)tan f2) -

where
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R T
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We see that the from factors of elastic scattering have now been replaced
by two “structure functions” W, and W,, which in general depend on the
energy-loss v in the labratory frame, and Q2. One can show, from genera]
arguements of current conservation and invariance properties, that there
are only two such structure functions in e-N and #-N scattering. For v-N
scattering, weak currents containing axial-vector parts are involved, and
there is one more structure function Ws. Experimentally, as emphasized
in the previous section in Fig. 1.1, one finds that the inelastic cross-section
falls of much more slowly than the elastic one — indeed it is more like
the Mokt cross-section. This leads to Bjorken scaling, Eq. (1.1.2), in the
deep inelastic region. Suppose, for simplicity, that there are only three
valence quarks in the proton, each with a “constituent” mass m, = Mf3,
where M is the proton mass (we drop the subscript P from now on). The
“elastic” scattering of such a “parton” with the electron takes place, in
this idealized model, only for Q% = @2, such that

Qf = 2mv = o(Mpy)y .

Qf _1
N TRER (1.2.15)
Of course, one may expect this peak to smear out because of the neglect
of the “Fermi motion” of these quarks, and more importantly, from the
other partons, the qq sea. The latter are more copious at smaller values
of z where gluon bremsstrahlung is more effective, If we assume that the
presence of the ¢ pairs has the same effect in e-P and e-n scattering, then
by taking the difference in these two cross-sections, the sea-effect may be
eliminated. The experimental data for the differencel® in the structure
functions, (Ff — F7), where F, = W, /v, are shown in Fig. 1.10 to illus-
trate and confirm Eq. (1.2.15).

Soon we shall see that to a good approximation, the cross-section
{1.2.14) is proportional to F;. Following Atwood?®, the elastic e-P peak
and the quasi-elastic peak in the reaction

1‘=$1:

etd—e+P+n | (1.2.16)

are also shown in Fig. 1.10 . In reaction (1.2.16), the incoming electron
scatters elastically with the proton in the loosely bound deutron, and
knocks it out. From our previous arguement, since the deuteron has two
contituents, each with mass Af »and My =~ 2M, we expect the peak to
appear at z = Q2 [2M; ~ % Of course, such a “quasi-elastic” peak is
smeared by the Fermi motion of the nucleons. For comparison, the elastic
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Figure 1.10 Quasi-elastic electron scattering from (a) nucleons in a deuteron,
(b) partons in nucleon. The normalized structure functions are plotted against
x, as defined in the text. For comparison, the elastic e- P data are also shown in
(c). The e-P and e-D data are for incident electron energy E, = 18 GeV, and
scattering angle 8 = 4°. In (D), (]7‘2"]) — F§™) is plotted to eliminate the sea-
quark contribution. The data are for 2GeV? < Q% < 8 GeV?, with invariant

mass W > 2GeV (after Atwood, ref. 19).

peak for e + P — e 4 P is also shown in Fig. 1.9 . Since the proton as
2 whole acts as one constituent in this reaction, the peak in this case
comes at ¢ = Q%/2Mr = 1. The reader should figure out the reason

for the spread about z = 1 in this case. The broad peak in (FF — FJ')

in Fig. 1.10 about = = Q2Mv = % does suggest that there are three

contituent quarks in the nucleon. It confirms the simple picture of the

electron being elastically scattered off the valence quark, and the subse-
quent hadronization (Section 1.1). The electron scattering data are sup-
plemented by the more energetic muon (and also neutrino) results. For
example, (Ff — F7') from muon-scattering?? is shown in Fig. 1.11 .

We now describe the parton model in a form introduced by Fevnman?.
In this model, the high-energy incident lepton sees the nucleon as an as-
sembly of long-lived, point-like partons. The deep inelastic lepton-nucleon
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Figure 1.11 The variation of ('sz — F7'), averaged over Q?, as a function of
z. The dark dots are the EMC muon data (7T < Q% < 170 GeV?), and the open
circles are SLAC-MIT data (2 < Q% < 20 GeV?) (after Aubert ef al.. ref. 20).

cross-section is found by an incoherent sum of the elastic lepton-parton
cross sections. The interesting point is that the Bjorken variable = plays
a double role. It may be interpreted, from Eq. (1.1.3), as the fractional
momentum carried by the struck parton. It is also the variable on which
the structure-functions W, and W, mainly depend. Scaling follows natu-
rally because only elastic scatterings between the partons and eclectrons
are involved in the deep inelastic process. In a frame of reference with
large longitudinal momentum (Fig. 1.4), the struck parton has a four-
momentum

£p=(EE,Ep)

where F and p are the energy and momentum of the nucleon. The effectjve

mass of the constituent, m_. is

q’

m, = V(EEY ~ (ép)? = €M, (1.2.17)

where M is the nucleon mass. The fraction €, of course, may take on any
value between 0 and 1. Let the probability that the ith parton carries a
fraction of momentum between & and £ + d€ be f,(£)dE, then

1
Z/O dE§fi(&=1. (1.2.18)
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This merely states that all the fractions add up to yield unity, and no mo-
mentum is lost. However, for the struck parton, { may be identified with
the Bjorken variable z = 2/2Mv of scattering. A look at the Rosenbluth
formula, Eq. (1.2.3), for a point charge (Gg = Gm = 1) will show that
the structure functions of a parton (of mass m,, charge e,) are of the form

Q? Q’ Q*
Wg:eg&(l/—-im‘—q ) Wf:e?ZT—nzé u_—Q—'r;; .

comparing the point-Rosenbluth

We have obtained the above forms by
nstraint that v = Q%/2m,. From

formula with Eq. (1.2.14), with the co
the above equations, it is seen that

0 _ 2 Q’ g_ 21 @ Q*
vWa = 606(1 - 2§Mu> . MW= corman (1 - 2§Mu> '
(1.2.19)
d the identity é(az) = 1§(x), and
f the nucleon are found by an inco-
tely weighted by the momentum

In the above equation, we have use
Eq. (1.2.17). The structure functions o
herent sum over the partons, appropria
distribution function f;,

2
FN =W} = / z;e? f,-(g)a(1 - 5%;;;) d¢
Putting, as before, z = Q*/2Mv,
FN=ve | f 5(1—f)d ,
2 Ei:et /fz('f) E E

or
FY(z) = vWl (2) = Lelzfi(z) - (1.2.20)

Similar algebra gives for FN (),
FN(z) = MW (z) = 15 el filx) - (1.2.21)

It thus follows, from Eq. (1.2.20) and (1.2.21), that

FN(z)=20F(2) - (1.2.22)

This is known as the Callen-Gross relation
Gross relation is verified. This is al
absorb the virtual photon are spin-
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formula (1.2.3), the second term with tan? 6/2 is due to magnetic scatter-
ing. In the absence of spin, this term is zero, and so is W, in Eq. (1.2.14).
Obviously, in this situation the relation (1.2.22) cannot be satisfied. A
more detailed analysis may be made by considering the contribution to
the cross-section of transverse and longitudinal virtual photons seperately.
This ratio may be extracted experimentally, and shows that the electri-
cally charged partons have spin-%. The main results may be understood
by remembering that helicity is conserved in electromagnetic interactions
(Ex. 2.15). We shall not do this analysis here. <

Digression : The Lorentz-invariant form of the

double-differential cross-section.

Consider Fig. 1.2 for the reaction

e+ P—-ée+X.

It is convenient to define the variables

2 2 2 2
§=+p)” o t=(p~p)’=¢ | u=(p-p)? .
where p, p_ and p/, are the four momenta of the proton, the incoming elec-
tron and the scattered electron respectively. Only two of three variables

&, tand u are independent, since it is easy to show that
s+t+u=(m?+ Al; +m?+ w2

where W is the invariant mass of X, W2=(p . +p- p2)%. The double-

differential cross-section for the reaction depicted in Fig. 1.2 was given in
the labratory frame in Eq. (1.2.14). In the Lorentz-invariant form. it is

dza dra? 1
= , F (s 4+ 4)? — 2usFP)
({11([,1)(‘1)_”“, 12 242(s + u) {21 1 (8 + ) — 2usk ]

Using the Callen-Gross relation (1.2.22), this reduces to

d*o dra? (2 4+ 4?) ,
= — ) Ff(z).
dtdu/ p_ . x t° 2s%(s + u)

Here z is defined by Eq. (1.1.3). In this approximation, the cross section
is directly proportional to F5(z). The proton structure function. FP(z),is
shown in Fig. 1.12 . The Q*-dependence is small and has been averaged.
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Figure 1.12 The proton structure function, sz(r), averaged over (J? from
e~ P (SLAC, Phys. Rev. D5, 528 (1972); D20, 1471 (1979)) and u~ P (EMC,
Nucl. Phys. 259B, 189 (1985)) data. In this figure. the EMC data ranged for
Q? = 9-27 GeV?, and for beam energy of 120 to 280 GeV. For the SLAC data,
the beam energy E, is in the range 4.5 to 18 GeV, and for z > 0.4, Q% = 9-
12 GeVZ; for smaller 2, Q% = 2.5-7 GeV?.

Deep-inelastic scattering data give us the momentum distribution
function of the quarks, f;(z), directly. From the digression above. note
that F-ZN(:E) may be obtained directly from the double-differential inelas-
tic cross-section. From Eq. (1.2.20), this in turn is related to f;(x). To
illustrate the method. we derive a simple expression for (Ff — F'). Con-
sider valence quarks of flavor u, d and s, and ¢g pairs of the same flavors
(belonging to the sea) in the nucleon. The distribution function for the
u valence quarks in the proton is fl‘z {(z), which is too cumbersome

alenc

a notation. Let us, instead. denote this by u{f(:r). From Eq. (1.2.20),
Fy(z)/z = 3, €2 f;(x). This gives,

F]) T 4 5. 1 5
2 (2) = —ul(z) + ~d{(z) + Sea contribution . (1.2.23)
T 9 9
We assume that the u-quark charge e, = 2, and for the d-quark e, = ~3

in units of the proton charge e. There are two valence v quarks and one
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valence d-quarks in the proton, giving

1
/ u{f(:r)dz‘ =2
0

Similarly, in the neutron,

1
/ db(z)dz =1 .
0

Fr 4 1
‘ﬂ = §u€'($) + é—d{ﬁ(.r) + Sea contribution | (1.2.24)
z
with ) .
/ uy(x)dr =1 / di-(x)dx = 2 .
0 0
If we further assume that
u{?(:r) = di(r) = up(z)
&(z) = ui(z) = dy(z)
and the sca contributions are the same, then
[F(2) = F{(2)] = £[uy(2) - dy ()] . (1.2.25)

In Fig. 1.10 or 1.11, we therefore get a direct measure of the difference in
the distribution of « and d valence quarks in the proton.

Exercise 1.3

Make the simplifving assumption that the sea quark and antiquark
distributions for all flavors u, d and s are the same, and denote it by
S(z). Show that Eq. (1.2.23) is modified to

FP@)y 4

. 4
—_ I " P . T
P 9“‘ (.T)+§dv(.1,)+ 53(.1,).

Experimentally, there is evidence that Fy(x) approaches a nonzero con-

stant as £ — 0. What can vou deduce about the sca-quarks from this
observation?

Finally, can we deduce anything about the gluons, at least indirect]y,
through the data? Note, from Eq. (1.2.20) that

(1.2.26)

1 1
/ Fy(z)dz = Ze?/ deafi(z) .
0 . Jo
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In our simplified notation, let us denote by P,SP) the fraction of the mo-
mentum carried by the u quarks in the proton, including the sea contri-

bution, t.e.,

1
PéP)zf dez(uf +ul, +ul,) -
0

Then, from Eq. (1.2.26), we get
1

(P)
b -

1
4
/ FP(2)dz = — PP 4
0 9
The quantity P, is the fractional momentum carried by the d-quarks.
Experimentally, one finds that

1
/ F;P(x)dz ~ 0.18 |
0
1
/ F{"(z)dr =~ 0.12 .
0

We then get
4 1
4pP) 4 Lp(P) 501
gPu +9 > 0.18 ,
and similarly

1 n
Ipm 4 Lpt & 012

9 9
where Pén) is the momentum fraction carried by the u-quark in the neu-
tron, etc. Making the reasonable assumption that

PM=pP | P =pP |

we get
PP ~036 , PP ~o018. (1.2.27)

This gives the suprising result that only 54 % of the momentum of the
nucleon is carried by the quarks (including the sea-quarks). The rest, it
is surmised, must be taken up by the gluons, even though they do not

interact with the electron.
As mentioned in Section 1.1, neutrinos and antineutrinos are also

very useful in these scattering experiments. Note that in a charged weak
current interaction, v, can only interact with the d quarks and v, with
the u quarks:

(1.2.28)
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For a reaction v + N — o/ + X, the expression for the double-differential
cross section is modified from expression (1.2.14) by the addition of a
term proportional to W5 with the same angle-dependence as Wi, but has
opposite signs for »N and #N. The vN structure functions obeys some
interesting sum rules that may be derived easily in the parton model. For
example, one gets the Bjorken rule

1
/ de [F7 - FF) =2, (1.2.29)
0

Such sum-rules may also be derived in large-Q? perturbative QCD with
additional correction terms. For example, the right-hand side of Eq. (1.2.29)
in lowest-order perturbative QCD is 2(1-2a,(Q?)/3r). and this is tested
to yield better agreement with experiment.

It may not be out of place here to mention the so-called “EMC effect”
at this point. It refers to the suprising observation, made first by the EMC
(European Muon Collaboration) group?? in deep inclastic muon-nucleus
scattering, that the bound nucleon structure function inside the nucleus
is substantially different from that of a free nucleon. The effect was also
observed with electron beams at much lower values of Q2 by a reanalysis
of some old SLAC data?, and by a more detailed SLAC experiment?4
later, on a variety of nuclear targets. There is some disagreement hetween
the EMC and SLAC data for Ve at low (@ < 0.3). This is shown in
Fig. 1.13 . It should be noted that the electron beam energy range in
the SLAC experiment (upto ~ 25 GeV) was very different from the muon
energy range 100-300 GeV, and Q%'s were very dissimilar too for the same
z-values. There has been a great deal of interest in the EMC-effect in the
nuclear community, and there is controversy in the interpretation of the
experimental results. We would not enter into such topics that will take
us too far from the focus of the present discussion.

In this and the preceding section, We have given a brief account of the
scattering results that have led us to believe that quarks do exist inside
a nulceon. These experiments also showed that for large-Q? the quarks
behave as essentially free particles. As mentioned earlier, this paved the
way for QCD to be taken seriously, when it was discovered that it has
asymptotic freedom (see Section 5.4). The reader who wants to learn more
about structure functions and deep inelastic scattering should study the
article by West?® and the standard texts!®. For the rest of the chapter, we
shall concentrate on the resonance excitations of the nucleon (rather than
the deep-inelastic scattering) by pions, and how these resonances may be
described in terms of the simplest constituent quark model.
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Figure 1.13 The EMC-effect in 6¥e. By taking the ratio of the inclusive in-
elastic lepton nucleus cross sections, (1/,4 UA/1/2 GD), the ratio of the nucleon
structure function, FQN, in °6Fe and deuteron is extracted under certain assump-
tions. This is denoted by FQFG(HT)/FQD(:I:) in the figure and plotted against r.
The BCDMS muonic data are compared with (a) earlier EMC muonic data, and
(b) electron scattering measurements. For details see A. C. Benvenuti et al.,
(RCDMS collaboration), CERN-EP/87-13. (1987).

1.3 NUCLEON RESONANCES AND BARYON
SPECTROSCOPY

A large number of excited states of the nucleon have been identified?® in
the energy range 1 to 3 GeV. These decay strongly to the ground state,
and typically have widths in the range 100-300 MeV. Consequently, there
is considerable overlapping of the resonances, more so with increasing exci-
tation energy. The quantum numbers of many of the low lving states have
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(%)

1 3
UT(7T+p) = ol ’ _2_0(/2) + %O%/z) )

op(r7p) = Zof (1.3.1)

The first relation is obvious, while the second requires a little computa-
tion involving the Clebsch-Gordon coupling coefficients. Both the plots
are dominated by the “delta” resonance, A(1232), which has I = 2 and
angular momentum J = % Some other peaks may be identified, but the
background, and the overlapping of resonances wash out the structure at

higher energies.

Exercise 1.4
The elastic scattering amplitude of a spinless particle is
k,0)=— 20+ 1)ayPy(cosb) , k= ————>r®
f( ) k;( )( (( ) (m]+m2)
Here k is the relative momentum, k = |k|, and 6 is the scattering angle.
In this partial wave expansion, a, = (n,e¥% — 1)/2i, where 17, is real
(0 < 5, < 1), and is called the inelasticity parameter. The phase shift of
the £th partial wave is given by the real parameter é,. The optical theorem
is :
47
op(k) = —kigmf(k,()) .

If the scattering is dominated by only one partial wave £, then show that
' T
o < '%;( 204+ 1) .

In 7N scattering, the total angular momentum J = £ + % The J = 523-
state, for example, may have £ = 1 and £ = 2. Assuming that only one of
these channels contrubute to A(1232),

2x

The relative k, as defined above, is independent of the ¢.m. momentum
K = k; + k,. It is convenient to evaluate k in the ¢.m. frame, where
K = 0. In this frame, k; = —k, = k. One also refers to k as the c.m.
momentum. Take o = 190mb (1mb = 10?’cm?) at /s = 1232 MeV.
Evaluate £ and show that the unitary limit for oy is reached at this energy

for J = %

—
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At low energies, it is also found that the 7*p cross section o rises
as k*, showing that the scattering is mostly taking place in the relative
¢ = 1 P-state. The standard notation for A(1232) is P33, denoting that
it is a resonance in the 7N P-state, with 2 = 3, 2J = 3. In baryon
spectroscopy, every baryonic state, including the ground-states, is written
in this manner. For example, the nucleon ground state is P11(939). A
state like D13(1520) would refer to a nucleon (21 = 1), with J = 3 and
nominal mass 1520 MeV. The state itself would have an intrinsic negative
parity, JP = %: but the N7 resonance is seen in the £ = 2 partial wave.

As mentioned earlier, the identification of these resonances demands
a careful analysis of the experimental data through partial wave analy-
sis. Since the pion has no spin. the scattering amplitude f(k%,6) in each
jsospin channel may be written as

f(K?,8) = g(k*.0) +ih(k*,8)0 -2, (1.3.2)

where i = (k x k’')/|k x k’|. Here o is the Pauli spin operator for the nu-
cleon, and k, k’ are the initial and final pion three moments in ¢.m. system,
and @ is the angle between them. Equation (1.3.2) has been constructed
so that f is a scalar, and not a pseudoscalar. The functions g and h are
complex, so that at each energy and angle there are four real parameters.
One of these may be absorbed in an overall phase factor, leaving three real
parameters to be determined by three independent sets of experiments.
These may involve unpolarized targets, with measurements of differential
cross section and the recoil nucleon polarization, or experiments with po-
Jarized targets. For an analysis of the data, a partial wave decomposition
of f(k2,8). as in Ex. (1.4) is made. Due to the energy-dependent inelastic
factor, a unique set of partial wave parameters cannot be extracted from
the data alone, no matter how accurate. It becomes necessary to apply
theoretical constraints of analyticity through dispersion relations. Each
partial wave is analysed using a smoothly varying background term along
with Breit-Wigner resonance terms as required. The clastic 7N-channel
is coupled to energy-dependent inelastic channels like A, pN, 7 N™ clc.
Using the theoretical constraints, 1t is then possible to arrive at a unique
set of amplitudes which fit the scattering data as a function of energy in
the range E, = 0.42 to 2.4GeV in the labratory frame. The interested
reader should see the papers of Cutkosky?® et al. of the CMU-LBL group,
and others by the Karlsruhe-Helsinki®® group.

It is customary to display the = N -elastic scattering amplitudes through
Argand diagrams. Consider the partial wave amplitude

fo(k) = (nee¥c = 1)/2ik . (1.3.3)
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We see that
1
Rek f,(k) = 5 sin26, , Smkf(k)=(1-mnpcos28,)/2. (1.3.4)

One plots an Argand diagram with 28m (k f,) along the y-axis and 2Re(k f,)
along the z-axis for various values of k at regular intervals. In the ideal-
ized case of no inelasticity (7, = 1) and a single resonance, the Argand
diagram would be a perfect circle with unit radius, the centre on the
imaginary axis at 7 (see Fig 1.15).

Note that at a resonance, § = 7, and this correponds to the highest
point of the circle. With increasing k, the circle is traced in the anti-
clockwise direction, with the “speed” determined by the rate of rise of
65,(k) with k. In practice, because the inelasticity factor n, is energy de-
pendent and less than one, the shape of the circle is distorted, and the
position of a resonance may be tilted off the imaginary axis. The same di-
agram often shows more than one resonance. Due to the distortion of the
Argand circle and huge background in some cases, it is hard to identify a
resonance. Often the speed of the trajectory (the k-values in the plot are

at 50 MeV intervals) near a “wiggle” may be the factor in unravelling the

2kimfy
P RN
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Figure 1.15 An Argand diagram for the 7N scattering amplitude in a given
partial wave. The dashed plot of the circle is an idealized case for a resonance
with no inelastic channels open. The solid curve is a schematic drawing for the
7 N-scattering amplitude F}5. There is a hint of another resonance contributing

at the tip of the turning tail.
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structure of the partial wave. The reader should look up many such exam-
ples in the particle-data tables?®, where a complete list of the established
resonances are given. In Table 1.1, we display the resonances of N and
A, and for completeness also show the excited states of other baryons
{hat contain one or more strange quarks. The strange quark carries a
strangeness quantum number § = —1. The states are classified accord-
ing to SU(3)-flavor and SU(6) spinxflavor representations. The counting
of these states would show that these could be generated by the mo-
tion of three valence quarks when the spurious centre of mass motion
is eliminated. This would be done in the next two sections, where the
multiplet-SU(3) notation will also be explained.

Exercise 1.5

Consider the pion momentum k in the ¢.m. frame. It interacts with the
aucleon in a localized region, and in elastic scattering has an asymptotic
wave function ~ sin{kr — %" + &) for large r. To compute the density of
states in the presence of the interaction, enclose the system artificially in
a large sphere of radius R, imposing the condition that the wave function
vanishes at r = R. Show that

aulh) — gy = L0
s dk
Here gp(k)dk is the number of states of a given partial wave £ lying be-
tween k and k + dk, and g}o)(k)dk is the corresponding number in the
absence of the interaction. The above formula shows that if §, rises steeply
over a narrow range of k and then flattens, it will give rise to a sharp bump
in the density of states. The elastic width is determined by 8é,/0k. These

bumps are the resonances in the continnum. as opposed to a delta-function
spike of a bound-state.

We may have given the impression that all the excited states of a
nucleon are seen as resonances in N scattering. This is not so and some
of the excited states that are predicted by the quark model may nearly
decouple from the 7N channel®®. In the simple quark model, the pion-
quark coupling promotes a single quark from the ground state, but some
excited states of a baryon may dominantly be 2-quark excitations. Such
examples will be seen in Section 1.5, and such states would decouple
from the = N-channel. However, electroproduction and photoproduction
of such states may still be possible. In Chapter 7 we shall see that a
photon has special affinity to a p-meson. In particular, a virtual photon

e ——————e
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Table 1.1 Baryons and Their Resonances with (u,d,s)

Valence Quarks

SU(6) SU(3)y S= -1
Reprn. Reprn. JF s=0 T=0 I=1 §=-2 S5§=-3
set(L=0) *8 1+ N(939) A(1116) £(1193) =(1318)
+ = Q1672
N=0 410 2 A(1232) £(1385) (1533) ( )
70-(L=1) 28 2~ N(1520) A(1690) T(1580)°" =(1820)7
N=1 1= N(1835) A(1670) E(1620)7°
N 1= N(1650) A(1800) E(1750)
27 N(1675) A(1830) E(1775)
- N(1700) ? . E(1670)
10 1T A(1620)
2= A(1700)
21 - A(1405)
2= A(1520)
s6t(L =0) *8 g: N(1440)” A(1600) 2(1660)”?
N=2 ‘10 2 A(1600) £(1690)""!
s6t(L=2) *8 3+ N(1720) AGB90)y 7
+
N=2 2 N(1680) A(1820) £(1915)
‘10 i+ aAQe1o)
3+ p(1920) £(2080)"°
3t A(1905)
I+ A(1950) ©(2030)
set(L=4) 8 i+ :
+ v
2 N(2220)
410 %4’
i+
2
£t A(2300)°"
L+ A(2420)
70t(L =0} 38 1+ N(QIT10) A(1800)  T(1880)""
N=2 ‘8 3+ N(1540)*7
10 1t a(ss0)?
23 1+ N(2100Y*7
70t(L=2) *8 gt A(2110)
+ .?
‘8 z N(1990)"" !
56~ 7 23 1- N(2090)'?7
(L=1) 2= N(2080)""!
N=3 ‘10 1= A(1900)
2- a(1940)"7 £(1940)
£ A(1930)

The two- and one-star states are not. confirmed?s.
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transforms to a p before coupling to a hadron in a model called the vector-
dominance model. Such a process may excite states that decay strongly
by the emission of a p (correlated 27). This is also true for the isoscalar
w-coupling, so reactions like yN — 27 N,7N — 37N may unravel those
ctates that were missing in the = N-channel. Besides these, the single pion
production process vIN — mN has also been studied in great detail3l,

Consider first real photons for simplicity. A real photon propagating
along the z-direction has only transverse polarization vector €, and €,.
The circularly polarized vector are

) = \—/I—‘E(c._r — i€,) .

Writing these in spherical polar coordinates, it is at once seen that
é+)  sinfe'®, =) x sinfe~'®. Thus the polarization vectors of a real
photon make its wave function go like Y;"=! and ¥;"="! (or a linear com-
bination thereof), and the m = 0 component is absent. Although a high
energy photon may carry away many units of angular momentum, the he-
licity (or the projection of the spin along the direction of propagation) may

only be £1. Thus, the decay of the resonance N(]GSO)%+ — N(Q40)%+ +
(which has a branching ratio of about 0.3% for the proton) causes the
photon to carry two units of angular momentum (AJ = 2), but the helic-
ity may only change by one unit (Am; = *1). Therefore, the m; = +3

states of N(940) may only be connected to the m; = 2 or 3 states of

€(+) = %(CI + i(y)

2
]\’(1680)%+, and not to the my = 3 state. Of course, the m; = ~2 state
may connect to m; = ——% of N(940), but this amplitude is related to the

(% — 1) amplitude by time-reversal. Thus for proton target coupling to

2
real photons, there are two such amplitudes Ag’;) and Ag

Z) for resonances
with J > %—, and similarly two more for a neutron. These amplitudes are
real, being the matrix-elements of the hermitian electromagnetic inter-
action j,A#* (see Chapter 5) between the nucleon and the excited state.

The helicity amplitudes As, and Ay, are listed for many resonances in

the particle data tables?®, and constitute a sensitive check to models of
the nucleon. In particular, there is considerable interest in the helicity
amplitudes for the transitions®?73* A(1232) — N(940) + 7, since these
determine the electric quadrupole E£2 and magnetic dipole M1 transition
amplitudes, the former depending sensitively on the D-state percentage in
the shell-model quark wave function. (This should not be confused with
the 7N partial wave.) In the simplest version of the quark model, the
three valence quarks move in the lowest S-state of the confining potential
for both N(940) and A(1232). In such a model the transition A — N+~
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is pure M1, i.e., a spin flip of a quark from the aligned J = % A-state
to J = 1 state of the nucleon. Deviations from zero in the E2/M1 ratio
of the amplitudes yield important clues about the structure®®. This ratio,
from analysis of the experimental data is

E2/M1 == —0.013 £ 0.005?% |

= —0.015 + 0.00203%) . (1.3.5)

In the calculation of the electric quadrupole transition matrix-elements
using the quark model wave functions, one should be wary of the trun-
cation effects in the basis?>. One can calculate this matrix-element either
through the charge operator p or vector-current j, since the two are related
through current conservation 9, j# = 0. The two schemes do not vield the
same result in a truncated space. Similar ambiguities®*® have been pointed
out for the virtual photon process (through electroproduction) y+N — A,
where the helicity zero longitudinal and scalar amplitudes contribute, and
are again related through current conservation. Such problems also arise
in nuclear physics®’.

As mentioned already, in the electroproduction of resonances a virtual
photon absorption is involved,and helicity zero is also allowed. The Q2-
dependence of the helicity amplitudes, including A,;, and As, have been
extracted for various resonances through (e, e’) experiments. The electric
and magnetic transition form factors G(Q?) and G ;(Q?) may be ex-
pressed in terms of Ai,(Q?) and As,(Q?). These data pose the severest
tests to models of the nucleon. The reader should look up ref. 38 for more
details.

1.4 THE COUNTING OF STATES AND SYMMETRY

The large number of baryonic states diplayed in Table 1.1 (and others not
detected experimentally) may be shown to arise from the motion of three
confined valence quarks, interacting with spin-dependent forces. The va-
lence quarks carry the quantum numbers of the baryonic state. In the
low-lying spectra, there is no direct evidence of explicit gluonic degrees
of freedom, although QCD predictions call for “glue-ball” states (with
no valence quarks) in the GeV mass range (see Ex. 3.5 for details). It is
possible that such states mix appreciably with some of the conventional
mesonic qq states, and experimental detection is difficult.In this section,
we shall only consider the valence quarks, and figure out, purely from
symmetry considerations, how many low-lying odd and even parity ex-
citations of a baryon may be expected. This may be done through the

5
=
E
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properties of group representation, but we shall do the counting by ele-
mentary methods3?, and later introduce the group theoretical language
(see Appendix D).

In nucleat physics,the proton and the neutron may be considered to
be identical particles when the isospin quantum numbers are introduced.
Gimilarly, for the counting of states, the light quarks u,d and s may be
treated on an equal footing, but having different “flavors”. The quantum
numbers carried by the light quarks are shown in Table 1.2 . The “mass” of
the s-quark is considerably larger than u and d, so the flavor symmetry is
broken appreciably. This removes the the mass-degeneracy in a mulitplet,
but the counting is not affected. In the three-quark system, the total wave
function must be antisymmetric with respect to the interchange of a pair
of quarks. The wave function has space, spin, flavor and color degrees
of freedom. The latter may be viewed as a strong “charge” that gauge
couples to the gluons®® to generate strong interactions (see Chapter 5).
A quark of a given flavor has one of three possible colors. This allows,
for example, A+ to be constituted from uuu, each ¢ having a different
color but all other quantum numbers the same. Since the long-range force
between color charges must keep increasing to account for the confinement
of quarks and gluons in a hadron, and there is no such long-range force
between hadrons, a hadron must be color neutral. In a meson (¢q) or a
baryon (gqq), the wave function containing the color degrees of freedom
seperates out from the rest?. In a baryon, the color singlet wave function
is 2 (3 x 3) determinant, antisymmetric under the exchange of a pair. This
in turn means that the rest of the wave function, containing the space. spin
and flavor coordinates, be symmetric. We now classify the permutation
symmetry of the states keeping the above restriction in mind, starting
with the spin degree of freedom.

Table 1.2 The Quantum Numbers
Carried by the Light Quarks

Flavor u d s
Charge % - 15 - %
Isospin % ]5 0
Iy 3 -1 0
Strangeness 0 0 —1
Baryon Number % ]3 %

¥
:
:
i .
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Spin
Three spm- quarks may give rise to a total spin S = — or S = 5 The
= — states are four in number (corresponding to §, = 2 ;, 5 and ———)

and are symmetrlc under the interchange of any two spins. For example,
the S = 2,5 = state is

X3z = e(a(2a(3) , (1.4.1)

where (1) is the spin-up Pauli spinor for particle 1 (we are using the
nonrelativistic formalism). The superscript S (for symmetric) on the spin
function Y denotes the permutation symmetry of the state. In addition,
there are two types of mixed symmettic states, X and X, /2 (we suppress

the 5,-quantum number of simplicity) with total spin § = X" is formed

by combining the spins of 1 and 2 to form S, = 0, and then coupling to

the spin 53 (of the third particle) to yield § = %, ie,(5,=0095; =
3) = S = 1. The wave function

Xy = 75(0MF@) - pla@)a(3) ,  (142)

is antisymmetric between particles 1 and 2, but there is no overall sym-
metry under the exchange 1 < 3 or 2 & 3. A mixed-symmetric wave
function, with antisymmetry between 1 « 2 will be labelled by the su-
perscnpt p. Obvxously, there are two distinct p-type states correspondmg
to S, =3 land §, = -—- . The A-type mixed symmetric state, Xl/z’ is con-

structed by couplmg spins of partlcles 1 and 2 to 1, and then couplmg
spin S to yield 3: (5, = 1® 5'3 =3)=>85=1 The wave function, in
obvious notation, is

le\/z’l/z = Z(l % m msl% %)]1 m)]%— mg)

ms

where the Clebsch-Gordon coefficients are listed in the Particle-data table.

We get
2 1 .
X =200 b= Lo s

Y

2 (200f — afa - foa) | (1.4.3)

Bl - oo
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whe?re aaf i§ a §hort-hand for a(1)a(2)B(3), etc. Note that no totally
antisymmetric spin-state is possible for the 3-¢ system. In short, we may
write

23 -8 =
8 i +.2 +. 2 . (1.4.4)
14 A

Gince each quark can be spin up or down, there are 23 states in a three-
quark system. The relation (1.4.4) implies that 4 of these states are sym-
metric, and the rest mixed symmetric. Note that since we are treating
the three quarks on an equal footing, the same analysis could be carried
out by first coupling 2 and 3 to Sy; etc. The basis generated thereby is

an alternate, but not an independent one from the earlier construct.

Exercise 1.6

Check that
A 1 ﬁ
X1/2_1/2 = “\/-6‘(2[3&0 - Baf — aﬂﬂ) .

Also find X;@Q’%, qu/%_%‘

Flavor

Consider again three quarks, each of which may have one of the three
flavors, u, d, or s. There are, in this case, 33 = 27 states. To classify them
accordingly to their symmetry, consider Fig. 1.16 . The three qu;;rks 1
2 and 3, are denoted by the three crosses. Quark 1 may have any of ’the’
three flavors u,d,s, which are arranged under 1 in a column. Similarly
for the quarks 2 and 3. How many symmetric states can be construcled%’
Clearly, we may have states like u(1)u(2)u(3), and two more like this from
the second and third row of Fig. 1.16 . We may also construct symmetric
states in which two of the quarks have the same flavor, and one different
Clearly, there are six such combinations udd, uss,duu,dss, suu and s;id.
each symmetrized in 1, 2, and 3. For example, one such symmetric sta.te’
from the combination udd is ‘

65 = [u(1)d(2)d(3)+ d(1)u(2)d(3) + d(1)d(2)u(3)]/ V3 -
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| 2 3
X X X
u d s
u d S
u d s

Figure 1.16 Construction of the flavor wave function. The three quarks are de-
noted by crosses and numbered. Each quark may have flavors u, d or s, as shown
in a column under it. (Our treatment closely follows the article by Feynman39).

Furthermore, there is one symmetric combination of the type uds, where
all three flavors are diflerent. Thus there are in all 10 states of the sym-
metric type. Also, since we are considering three quarks and three flavors,
there is only one determinantal combination which is totally antisvmmet-
ric under the exchange of any pair. The rest of the sixteen states must be
of the mixed symmetric type. Of these, 8 are of p-type (antisymmetric in
1 and 2), and 8 A-type (symmetric in 1 and 2). We may the write

3 _ _ Q R
3*=27=10 + 8 + 8 + 1 . (1.1.5)
S P A A

For the N and A states (the nonstrange sector), only the u and d quarks
are involved, and the flavor wave functions are constructed to form states

of good isospin I = -é— and I = % These may be formed in exactly the

same way as the spin functions with § = % and § = 15 For example,

1
¢i++:uuu , z:—Q(ud—du)u R

1 1
qﬁ,’} = -—\/—6(2uud — udu — duu) , ¢} = ——~\/_—6(2ddu ~ dud — udd) . (1.4.6)
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Spianlavor Wave Functions

It is now easy to classify the combined spin flavor (23 x 3P =(6)° =
216) states according to their permutation symmetry. In group theory
Janguage, we have already seen the multiplet structure of the states in
SU(2)epin 2nd SU(3)gavor and now we are about to combine these to form
the SU(6) multiplets?2. From Eqgs. (1.4.4) and (1.4.5), we may combine the
4 symmetric spin states with the 10 symmetric flavor states to obtain 40
states which are symmetric in the Hilbert space of spin and flavor. These
are denoted by 410, the 4 corresponding to the (25 + 1) spin states with
S= % Similarly, the mixed symmetric spin states may be combined with
the mixed symmetric flavor states to yield other symmetric combinations
with § = 1. The combination that is symmetric under exchange of any
pair is (x*¢* + x*¢*). Such combinations yield 2 x 8 symmetric states,
and are denoted by 28. We may now write

410+ 28 = 56 (5) . (1.4.7)

Referring to Table 1.1, we note that the ground state spin—% octet, 28,
and the spin-% decuplet, 10, form these set of 56 states. If there were
no spin-dependent forces between the quarks, one would expect no mass
difference between the 28 and the 10 multiplets. We see from Table 1.1
that this is not so, the baryons with § = % are consistently heavier. Even
within the members of a flavor multiplet (like 28), there is a considerable
mass splitting, reflecting the heavier mass of the strange quark.

The mixed symmetric spin and flavor states may also be combined
to form antisymmetric combinations under the exhange of any pair. Such
an antisymmetric form, also denoted by 28 is ("> — X ¢”). Another
antisymiaetric form, 41, is obtained by combining the antisymmetric flavor
part with the symmetric spin functions. In total, there are

1428=20(4) , (1.4.8)

antisymmetric spin-flavor states. There is no firm experimental evidence
for such states.

Out of the 33 x 23 = 216 states, we have arranged 56 as symimetric
and 20 as antisymmetric. The rest of the 140 states are mixed symmetric,
split equally in p- and A-types. In obvious notation, we have

210+ 48 4+ 28+ 21 = 70(p)

1.4.
and 210+ 48+ 28+ 21 ="T70(X). (14.9)
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Table 1.3 Spin-flavor Wave Functions of a Baryon
Classified According to Permutation Symmetry*

56 (S)

410 : x%¢° 28 1 (x*¢* + X M) /V2
20 (A)

1 xSt 81 (8 - X )/V2
70 (p) -

210 : xP¢S 18 . x5¢°

28 (XM + X)) [V2 P xPoh
70 ()

210 . X/\d)S 48 . XS¢/\

8 (0 - XM [V2 L xAeh

* The spin wave functions x5, x” and x* are defined in Egs. (1.4.1-
1.4.3) for maximum S5,. The flavor wave functions ¢ in the nonstrange
sector are given by Eq. (1.4.6). The antisymmetric ¢4 is a defrkrfental
state in u,d, s. » €

The wave function for the 28 p-type state is (x”¢* + x*@*), whereas
for the 28 A-type state is (x*¢* — x*¢*). In Table 1.1, the odd-parity

excitations (under 707) fall in this category. We shall soon see how the

spin-flavor states are combined with the wave function of the spatial part
to construct totally symmetric states. In Table 1.3, we list, for complete-
ness, the spin-flavor wave functions of various permutation symmetries.

1.5 THE CONSTITUENT QUARK MODEL IN THE
OSCILLATOR BASIS

To count the states of a baryon allowed by symmetry considerations, we
now have to construct the spatial states and combine these appropriately
with the spin-flavor wave functions of the last section. For this purpose
it is most convenient to use the nonrelativistic oscillator model, that was
developed more than twenty years back**#4. Much later, it was pointed
out by De Rijula et al.*® that the spin-dependent hyperfine potential be-
tween two quarks due to one-gluon exchange explains the mass splittings
between the 28 and 410 members of the ground state baryons. Isgur and
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Karl%€ used the basis generated by the oscillator potential to diagonal-
jze the hyperfine and the tensor one-gluon exchange potentials. This is
a highly sucessful model in spectroscopy and baryon structure. It is not
clear why a nonrelativistic model should be so good since on rather gen-
eral grounds the motion of light quarks should be relativistic. A particle of
mass M, localized in a volume of radius R, has momentum ~ 1/r through
the uncertainty relation. Its Kinetic energy (T) <« m only fmR> 1. In
the constituent quark model to be described here, this is not satisfied for
the u,d and s flavored quarks. We shall overlook this shortcoming here
and note a point in the favor of the model — that the spurious excitation
of the centre-of-mass motion can be eliminated easily in the nonrelativis-
tic framework. This is vital for the correct counting and classification of
the excited states. In the oscillator model described here, all this can be
done analytically. The basis states are generated by the Hamiltonian

1 1 1.,
Ho = 5—(p} +P3) + 5, 7Pa+ 3K PR N (15.1)

1<

Here quarks 1 and 2 are assumed to have the same mass, and quark
3 has mass m'. The mass difference between the u and d quarks are
ignored. For N and A, m = m'; for A and %, m' = m,. The quarks
are confined in an oscillator potential whose slope is independent of the
flavor quantum number. One defines the Jacobi coordinates to eliminate
the c.m. variables:

p= (r; — 1) X = (ry 41— 2r3) R = m(ry +1y) + m'rg
V2o V6 P em = T mm)
(1.5.2)

Note that the coordinate p is antisymmetric and A symmetric under the
exchange of ry and ry, in conformity with our notation in spin and isospin
wavefunctions. Define

(1.5.3)

/
A’I:Qm+'flll R mp:: m my = 3mm
(2m + m’)

v and the momenta conjugate to p, A and R

p, = M,P p/\:m,\.A , Pcm:MRcm.

b

It is straightforward to check that the oscillator Hamiltonian reduces 1o

2

P 3 P2 3 p?
H = 4 Qg 2 A il 7 ¥ cm

0 (2mp+zhp>+(————2 A+2AA>+—_2M . (1.5.4)
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The last term corresponds to the c.m., and does not play any role in
the intrinsic spectrum of the baryon. Thus the intrinsic spatial degrees of
freedom correspond to the motion of two independent oscillators in this
model. The oscillator spacings

= (3K/m,)" | w,=(BK/my)"% | (1.5.5)

are identical in the N, A and Q~ where m = m’. Henceforth we consider
N and A, and put w = w, = wy = (3K /m)*. The spatial wave function
is a product of the p-oscillator and the A-oscillator states. Using standard
notation, the principal quantum numbers of the p-oscillator is N,=(2n,+
¢,), and 51m11ar1y for the A-oscillator. The energy of a state is spec1ﬁed
bv the quantum number N:

=N+ 3)w ,.M:A;+NA=m%+w”+(mA+gy

The spatial angular momentum L of a state is obtained by coupling £,
and £,: .

L=¢,+¢,. (1.5.6)
The wave function of an oscillator is (e.g. the p-oscillator)
Ve, (P) = Ry o (0o m,(P) 5 (1.5.7)

where we have dropped the m,-quantum number in Vo ,¢, Tor simplicity.

Denoting the total spatial wave function by W,/ (p, A), the ground-state
obviously has A =0, L™ = 0%:

V3o(2 A) = tio(P)too(A) - (1.5.8)

Taking normalized oscillator wave functions.

' o\ 2
[ —a? )
‘Ilgo(p’A) = (7_3/4) € o(p2+\2)/2 ] (159)

This is totallv symmetric, as denoted by the superscript S since (p2+A?%) =
3(r3, + rZ; 4 r3)). We have used the oscillator parameter o in (1.5.9):

o = (mw) = (3Km)'K . (1.5.10)

The M = 1 states have L™ = 17, and have mixed symmetry (p- and
A-types):
V11 = Yor(P)¥oo(A)

(1.5.11)
¥y = Yool p) g1 (A) .
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tor parameter ag in (1.5.9):

‘m)'M . (1.5.10)
ave mixed symmetry (p- and

A)

9. (1.5.11)
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Table 1.4 N = 2 Oscillator states

W3, = — 2 ool V1o V) + ol )o V)]
Ul = = [Yoo(R)t10(N) = ¥10(P)¥ooN)]
W8y = - [Yor (P (W]}

= [¢’01(P)¢01(A)]L=1
V3, = ﬁ[%z(l’)d’ou(’\) + Yo0(P)o2(N)]

‘1’5\2 = ‘k [¢02(P)1/~’00()‘) - 1"00(/’)‘%2(")]
‘1’82 = [wm(ﬂ)"/)m(}‘)] =2

N

K
RES
|

Note that apart from a spherically symmetric factor, Yo1(p) is propor-
tional to pYy™(p), which transforms as p, and hence changes sign under
the interchange of 1 and 2. We also list the N/ = 2 states which are
frequently in use and may have L™ = 0t,1% or 2%. Oscillator states of
appropriate symmetry for A" = 3 will be found in ref. 47 . Combining
the spin-flavor wave functions listed in Table 1.3 with the oscillator states
given in this section, it is straightforward to construct totally symmet-
ric states as required. These are listed for N and A below, with a state
denoted as |{SU} B**1L,.). Here, {SUs} denotes the spin-flavor mul-
tiplet structure, B stands for the baryon. spin .S = —% or % L the orbital
angular momentum, and (sym) denotes the symmetry of the oscillator
states. The latter is denoted by the subscript S, M or A corresponding to
Symmetric, Mixed or Antisymmetric oscillator state.

The wave functions shown in Table 1.5 are still to be coupled to
J =L+ 8S. For example, |{70} N, Py) would couple to yield the states
J = %,% and 1. Since the N/ = 1,I = 17 states are of mixed sym-
metry (see Eq. 1.5.11), the low-lying odd-parity states of the nucleon are
[{70}N, 4Py} and | {70} N,2 Py,), giving rise to the five states (527 .3/ .1/
and 3,7 ,1/27) as shown in Table 1.1 . For the A, on the other hand, for
N = 1only |{70}A,?Pyy) is allowed by symmetry, yielding the A(1620)1/2
and A(1700)3/,~ states in Table 1.1 .

The experimental data in the table show a very interesting pattern.
Amongst the /' = 2 even-parity excited states, only the symmetric {56}
configurations are seen strongly. The {70} M = 2 states. on the other
hand, with the exception of N(1710)12". are either very weak and uncer-
tain, or not seen at all. This, of course, in not the case with the A =1{70}
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Table 1.5 Symmetrised States of N and A : i this model. It is impor
Nucleon large an oscillator bas
|{56}N,2L5) — :/l_;(xpd)p + XA¢'\)‘I’§/L , ‘ %azgealzta:s;s would
' interaction, so a; wou'
{7T0}N,2Lpp) = Hxre* + )W + (XY — MLl approximation is to ta
O L) = G + VR ) 1560
H20LN,2Lg) = (8 — X*¢") ¥
Delta giving a;, close to unit
56YA,4Ls) = XS¢5¥R L -
{56} s) = X ¢ Exercise 1.7

{70}A,2Lyg) = J=(x? ¥ + X War ) -
NG L L g Using the form (1

odd-parity states, all of which are seen. Table 1.4 shows that a state l A
like ¥4, has both the p- and A-coordinates excited together, and these ‘ 1

constitute half the weight of the {70} N = 2 wave functions (Table 1.5). Th lator stat
e oscillator state }

Such states do not couple directly to the ground state through a single- | Sl
quark excitation process. This is easiest to see with r3 = R — VA A Talfmg w = 0.5GeV,
perimental mass split!

one-body operator coupling to quark 3 may only cause excitation of the i
A-oscillator. Since the total wave function is overall symmetric the matrix

element of an operator O; (i = 1,2,3) is

evaluate (Vj}7), and o

Isgur and Karl*®
do most of the calcu
diagonalization”. Th.

~ functions (1.5.14) to
states to have sm»1l 5

(0;) = 3(03) - (1.5.12)

It follows that ¥4, and W4, states would be hard to excite through one-
step processes.

Note that the elimination of the c.m. coordinate R is crucial in the N
correct counting of the states. This is one reason why the nonrelativis- =2, they find_
tic approach is so successful in spectroscopy. To gain further insight, the IN) ~ 0.

oscillator basis may be used to diagonalize the interaction between the
quarks. If one ignores the spin-orbit part of the one-gluon exchange po-

tential, then the spin-dependent piece between two quarks ¢ and j in a
45 ' ¥ The D-state mixing i

the second term in th
S = 1 state of a pair.

-

baryon is

20 1 (3(S; ;)85 13;)

i
Vh

1 3m1m1 T

s 87 3 ]

— [-—3—8; -8,6°(r;;) + ;?J‘( 5 -S;- Sj>} . and attractive for §
(1.5.13) J S =1, and this caus
nucleon (or A) wave

.t

1j

The spin-independent Coulomb potential and other momentum-dependent
terms have been left out. The eflective quark-gluon coupling constant o
(analogous to the electromagnetic coupling constant o = 1/137) is deter-
mined by calculating the N-A mass difference with Vj, ¢ of Eq. (1.5.13) in
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this model. It is important to realize that this value of o, depends on how
Jarge an oscillator basis is chosen for the diagonalization of V. A very
Jarge basis would cause a collapse of N due to the zero-range attractive
interaction, s &, would be infinitesimal. On the other hand, the simplest
approximation is to take the pure A" = 0 oscillator states:

IN) = |{56}N,2Ss) , 1A)=|{56}A,%55) (1.5.14)

giving close to unity.

Exercise 1.7

Using the form (1.5.14), show that in first-order perturbation theory,
My — My = 2V2a,03/3m*7 .

The oscillator state U5, is defined in Eq. (1.5.9), with oy = (mw)%.
Taking w = 0.5GeV, m = 0.33GeV, show that a, = 0.9 to fit the ex-
perimental mass splitting between A and N. Use the property (1.5.12) to
evaluate (Vji7), and multiply it by three. )

Isgur and Karl*® originally took an oscillator space up to A = 2 to
do most of the calculations. Recently, a larger basis has been used for
diagonalization“. The hyperfine interaction would cause the simple wave
functions (1.5.14) to be modified, causing the nucleon and delta ground
states to have small admixtures of excited basis states. For a basis up to
N =2, they find, for example®®, 2

ERARY

v
IN) = 0.90[{56} N.2S5) — 0.34|{56} N,%S5)
— 0.27[{70} N .28 )s) — 0.06[{7T0}N2Dyy) . (1.5.15)

The D-state mixing is caused by the tensor interaction in V,:}, as given by
t%le second term in the right-hand side of (1.5.13), which acts only in th‘e
§ = 1 state of a pair. The S, -S, term also is repulsive for the § = 1 state
and attractive for § = 0. For the pair uu in proton and dd in neutron’
S =1, and this causes a repulsion betwecn like quarks. This is why thé
nucleon (or A) wave functions are no longer totally spatially symmetric.
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-

Exercise 1.8

Calculate the mean square charge radius

3
(e = Z (eidr; — R)%)

for the neutron and the proton ground states, taking the pure oscillator
states (1.5.14). It will be easy if vou take (r%)g, = 3{es(rs — R)?), and
%/\2. Rocall that (in units of charge €)

note that (ry — R)? = %
€3 = (%Y(.‘%) + 13(3)) .

where ¥ = (B + 5) is the hypercharge, and I = T3/2. You should find

i (63>n =0

(R R ]

(es)p =

and

-2

(’"2>.’; =ag- for (Tz):h = for mneutron .

proton

The above exercise shows that for a purely symmetric state given
by (1.5.14), the neutron charge radius is zero. The experimental value
of (r2)7, is small and negative as given by Eq. (1.2.8). Taking the state
(1.5.15) for |N) that has admixtures of |{70},%5,s) wave function. it was
shown that one obtains a realistic valu};e for the ratio (rz)zh/(rz)gl. Note,
however, that the charge radius (r?)g, is 0.49fm only if the oscillator
500 MeV to fit the odd-parity excited states. This
d to the experimental value given in Eq. (1.2.8).

-

spacing w is taken to be
is far too small compare

Exercise 1.9

Consider each quark as a point Dirac particle. In the nonrelativistic

limit, the magnetic moment operator is

A

3
ﬂr—'——' E "2“‘—0'i N S; = ,12'0'1' .
1
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(a) Calculate (N|u,|N) for n and P, using the wave functions (1.5.14).
Show that

rp =5 where we take m, =my;=m
2 e
and My = ——5% .

(b) Show that the transition magnetic moment is

2V/2

L k)
3 HP

pap = (A% |P) =

where again only the {56} symmetric ground state is taken.

From the calculation of the magnetic moments in the above exercise,
we see that the experimental ratio of u,/up =~ —1.91/2.79 = —0.68 is
close to the theoretical value of —%, irrespective of the mass m. Going a
step further, the calculation also shows that the proton magnetic moment
may be reproduced by taking m = Mp/2.79, where Mp is the proton
mass. This gives the “constituent” quark mass m = 336 MeV, about one
third the nucleon mass. It is customary to choose m within the range 300-
350 MeV. This is very different from the “current” quark masses which
enter the Lagrangian in a relativistic formulation (see Section 5.5). The
current quark masses of u and d quarks are only a few MeV. In Chapter 4
on the bag model, we shall see that the zero-point energy of a confined
zero-mass quark is not too different from the constituent mass®. In a
more sophisticated approach, the constituent quark mass is generated by
dynamical chiral symmetry breaking (see Ex. 4.8).

It may be worthwhile here to go back briefly to the photoproduction
helicity amplitudes As, and Ay, that were introduced in Section (1.3),
and comment on the role of the hyperfine interaction. The electromagnetic
interaction in the nonrelativistic form (neglecting the A? term) is®°

3

[ €€ )

Hid = Z—%{(Pi “A(r)+ A(r;) - p;) + 0 (Vi x A(ry))] - (1.5.16)
=1 t

If one takes, for the odd-parity A/ = 1 excited state a pure {70} L =

I state, and for the ground state of the nucleon a pure {56} L = 0

wave function, some simple selection rules, first observed by Moorhouse®?,

follow. For example, consider the electromagnetic decays of

N(1675)5" — N(940)Yt + ~ .
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Again take H i = 3H™(3), exploiting the overall symmetry. From Ta-
ble 1.5, N(1675)5>" belongs to |{70} N,*P) state, with a symmetric spin
function x°. An operator Hj,(3), depending only on the coordinates of
quark 3, cannot alter the wave function of 1 and 2. Since x” and y° are

orthogonal in this part, only the A-part contributes:
({70} N, Pales| {56} N,*Ss) = §(6leale”) -

It is easy to check that for the proton, (¢;\/2]e3|¢{\/2) = 0 while for the
neutron (d)il/zleg,]d)j\_%) = 1.1t then follows that the N(1675)5/" —

Y Afz and A{';2 amplitudes should vanish, while the corresponding nvy
transitions may be appreciable. Experimentally%,

A5, = —69+19 . Af =-d7£23
AL =19412 . AL =10412

in units of GeV~" x 1073. The deviations from the ideal Moorhouse
predictions are due to the spin-dependent forces that have caused the ad-
mixtures of the {70} states in the ground state. Similar predictions in the
strange sector A(1830)52" — KN are also modified by such mixings*®.
These examples show the usefulness of the Isgur-Karl model. Taking such
diagonalized wave functions, Isgur and Koniuk® also analyzed which ex-
cited states would couple strongly in the pion channel. This provided an

explanation to the puzzle of the “missing resonances”-

We briefly refer to another curious aspect of the spectrum in Table 1.1

— that the even parity excitations are at about the same energy as the
odd-parity ones. Indeed, N(1440)1/2+,A(1600)1/2Jr and £(1660)121 exci-
tations all seem to be anomalously low in the oscillator model. In the
standard Isgur-Karl picture, this is attributed to the anharmonic forces
present in the gg-interaction, that tend to bring down the symmetric states
much more than the mixed symmetric ones. What are the anharmonic in-
teractions? The point to note is that the harmonic form H, of Eq. (1.5.1)
was assumed for convenience. A more realistic spin-independent form of
the Hamiltonian, dictated by theory and meson spectroscopy, would be

1 1 20, 1
Ho = 5—(pT+P3) + 5P + Z(—g: + 5“:‘;’) . (1817
i<y "

Here b is the universal confinement strength of about 0.18 GeV? obtained
from the spectroscopy of heavy mesons, and a, the effective quark-gluon

o I

a5
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coupling. The origin of the numerical factor —% in the Coulomb poten-

(jal is due to the color factor N2+ Aif), see Eq. (3.3 29). The spi
independent part of the interaction is thus appreciably (.iif.fere'nt ; e sPtl}I:_
harmonic form assumed to generate the basis. This should not mar:tm ; e
ihe ground state, but the higher excited state positions would alt er for
ciably. An essentially exact three-body calculation®? with (1.5.1 ;r a};:pre_
however, that N(1440)1/2+ cannot have come down so lovx; d )i o
harmonicity. Similar problems are encountered in the ' =3 A (li(;o (;) 1aun_—
and A(1930)%2" states. There have been variations of the oscillato ) {12 |
which assumed that in addition to M} of Eq. (1.5.17), there a any
body forces in the baryon that may cause deformad;ions,3 of the l:zi man'y-
the excited states. It is then possible to bring down the A" = 2 a; er/(')Iiln
states without introducing extra parameters. c o =3

Exercise 1.10 The Deformed Oscillator Model?3

In N and A, assume that the
I : t the quarks are moving i
triaxial oscillator, with ng in a deformable

1 1
Ho=s—(p2+p3)+ 3
0= 5 (P +P)+5m > Wi+ A}
J1=%,y,z

Show that the intrivnsic energy may be written as
En.nyn, = Thw (N + 1)+ hw (N, + 1) + hw (N, + 1)

where
N_ =
z (np,+n.\,) ’ Ny:(npernAy) ’ Nz:(npz+nAz) -

(o) §) 10on
3 N g n (NI’Ny7 Z)’ minimiz
E N, by val ylllg wr,wy a“d w~, V\lth !]l( COIlSt&nt VO]llllle COIldlthn

3

Wew, W, = Wy .

y

Show that this leads to
we (N, + 1) = wy(Ny + 1) = wz(NZ + 1) .

D = y ¥

weﬁfewN = N, + ]\yf—i— Nz.hl\ote that for ' = 0, the ground-state

r = W, = w, = Wy from above, so the baryon is spheri ’
I , pherical, the sam

:tsathe. standard Isgur-harl model. Show that for A/ = 1, the equi]ibriun?

ate is prolate, with Eyy; = 3.78w, (instead of (3/2 + 5/2)wy = 4wq of
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the spherical model). Also show that the lowest A/ = 2 state is prolate,
with energy Foop = 4.32wp. The energy difference between the \" =3
and AV = 2 states is now (4.32 — 3.78)wo = 0.54wy, rather than wgy of
the spherical model. Further lowering will result from projecting out the

L = 0 state.

From Table 1.1, we see that there are very small spin-orbit splittings
in the data. For example, N(1520)3%;" and N (1535)1/2” are really degen-
erate, as are the N = 2 470 states in A around 1910-1950 MeV. If one
took the two-body spin-orbit part of the one-gluon exchange potential,
and eliminated the c.m. coordinate, one gets the form®?

Ja, 1

-G
Vso

1

m;}g{(al +0a,)-(pxPp,) - 373(01 ~03) - (pX D,\)} ,
(1.5.18)

where we have multiplied by 3 to take account of three pairsin N or A. A

direct diagonalization of this would totally destroy agreement of the model

with experiment. Note, however, that the spin-or

long range, in contrast to the “zero-range” g, - 05 potential. The strength
a. in the latter was dependent on the size of the basis, and this was due

s .
haracter. If one knew what the actual range of ‘4%

to its extreme short range ¢
the o, - 0, force is, one could do a nonperturbative® (or a large basis*?)

calculation to fix a,, and use thisin Eq. (1.5.18). Calculation along these
lines indicate a much smaller®” a,, and moreover there are other effects
(like cancellation®® with the one-body spin-orbit potential arising through

) that result in the suppresion of the spin-orbit force®s.

relativistic effects
ature, there is still considerable

Actually, contrary to the claims in the liter
ambiguity in the model. There are several sophisticated versions of the

oscillator model in the literature, but the most useful is still the simplest

Isgur-Karl version originally proposed.
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