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CHAPTER 3

The M.I. T. Bag Model

3.1 PHYSICAL BASIS

In the last chapter, the independent motion of quarks in a cavity was
considered at length. It will turn out that the working version of the M.1.'T".
bag model is almost identical, except that an extra term is introduced to
balance the outward pressure on the walls of the cavity. One is naturally
faced with the question of justifving such a naive model. We proceed to
do this briefly, starting with the nature of QED and QCD vacuum. A
good discussion on this topic is given in the text by Leel, and in Nielsen?.
More details will be found in Sections 5.4 and 5.5 .

We first discuss the term polarizability as used in nonrelativistic
physics. The Coulomb potential between two electric charges gets
“screened” in a polarizable medium:

2

Vir)=
. () dmer

where € is the dielectric constant for the medium, and r is the spatial
distance between charges, r = |r|. In vacuum, ¢ = 1. Screening of the
charges due to the polarizability of the molecules makes ¢ > 1. Also,
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in a paramagnetic medium, an external magnetic field B itself induces
) magnetization, with the result that the energy density changes by

1
AR = —5471')(132
where x (> 0) is the magnetic susceptibility of the medium. The magnetic
permeability y is defined as y = 1447y, and for a paramagnetic substance
# > 1. In nonrelativistic physics, it is possible to have both ¢ and greater
than unity, as, for example, in a free electron gas at zero temperature.

Exercise 3.1

Use the nonrelativitic quark-model to calculate the magnetic sus-
ceptibility of a proton. Use perturbation theory. With a uniform mag-
netic field B in the z-direction, the perturbing Hamiltonian is fri =
—#.B + (e?/8m,) (2% + y?)B?, and p, = Yoq.(eq/2m )a,, where m, is the
constituent quark mass. We have taken A = 3(B x r). The first term,
taken to second order, gives a paramagnetic contribution. The diagonal
matrix-element of the second term is diamagnetic. Show that the proton
magnetic susceptibility Xp is given by

_ % Gt
e (Ba — Ey) 6m, \5)e

(Here ppp = (P|p,|A) = 21/2/3 up, up being the magnetic moment of
the proton. Transitions to states other than A(1230) are ignored because

of negligible spatial overlap with the ground state. Take m, = 336 MeV,

(rz)jp/:' = 0.86fm, and £, ~Ey = 300 MeV. Show that yp ~ 2x10~4 fm*3.
How do you think it can be measured? In the literature, xp is also called
the magnetic polarizability and denoted by B. The corresponding response
function for the electric field is termed electric polarizability and denoted
by a (see Exercise 5.11). '

In QED, the vacuum itself behaves like a polarizable medium. This
is so because the interag:tion between two electrons takes place via the
exchange of photons. The photon, although uncharged, can create vir-
tual electron-positron pairs, causing partial screening of the test electron g
charge. This means that ¢ > 1 as long as the distance r is large enough =
so that the virtual cloud around the test charge is not penetrated. This
distance is ridiculously small, so in practice the larger than unity value of ,
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¢ is absorbed in the definition of the charge e. For a detailed discussion
of this point, see Section 5.4 . It does mean that the electromagnetic cou-
pling constant should become stronger as r — 0. In a Lorentz invariant
theory, moreover, ue = 1, so € > 1 implies ¢t < 1 for the QED vac-
wum, This is why the QED vacuum is termed diamagnetic. In QCD, the
quarks have color charge, and interact by exchanging gluons. Gluons, like
photons, are spin-one objects, but unlike photons, they also carry (color)
charge. In a QCD vacuum, a gluon can produce virtual ¢g pairs, which
would screen the interaction, and should make it diamagnetic as in the
QED case. However, since the gluons have color charge as well as spin,
they can cause color magnetization of the medium and make the medium
paramagnetic. This effect actually overcomes the diamagnetic property of
the gg pairs, and the overall result is that g, > 1 for the QCD vacuum
where the subscript refers to color. The situation is somewhat like the
paramagnetism of the clectron gas, where the intrinsic spin alignment of
the electrons overrides the diamagetism of orbital motion.

Since ji, > 1 for the QCD vacuum (for large enough r), it follows that
€. < 1, so that the color electric interaction between the charged objects
becomes stronger for larger distances. In this sense it is an “antiscreening”
medium. As the distance r — 0, on the other hand, y, and ¢, — 1, and
the interaction becomes weaker. This is called asymptotic freedom, in the
sense that r — 0 corresponds to asymptotically large values of momentum
transfer q%. For large r or small g2, if 1, > 1, this should also explain
confinement of color charge. An idealization of this picture, leading to the
bag model, is shown in Fig. 3.1 (a). Inside the hadron, . = ¢, = 1, the
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Figure 3.1 The idealized picture of a hadron surrounded by the QCD vacuum
is analogous to a cavity in a perfect conductor.
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interaction between color charges is weak. Outside the hadron radius, the
medium is a perfect paramagnet, with g, = oo and ¢, = 0. Consequently
the color fields are totally confined within the hadron. The situation is
analogous to the electrodynamic case, Fig. 3.1 (b), where a cavity is dug
into a perfect conductor (i.e., a superconductor). Inside this cavity, on
the boundary of the surface, n X E = 0 and n-B = 0, where 1 is an
outward normal unit vector to the surface. The QCD vacuum is analogous
to the superconductor in electrodynamics, but with the roles of 1 and €
interchanged. Accordingly, on the surface of the hadron, the boundary
conditions (for the gluon color fields) are (see Fig. 3.2)

AxB=0 , a-E=0. (3.1.1)

This would suffice for the color electric and magnetic fields, but what
boundary condition should be used for the quark fields if these are present?
In the case of the static cavity, we found, in Eq. (2.5.7), z_p?,b]r:R =0 as
a boundary condition. To implement this in a Lorentz invariant way, we
write

wrn,p =9 on the surface of the bag. (3.1.22)

Here n, is a space-like unit vector normal to the surface. Note that this
implies B _
—ipyin, = ¢ on the surface. (3.1.2 b)

Then ¥ = iz}('y“nﬂzj)) = —i(t?)’y"nu)d) = 0 on the surface of the bag. In
this form, it also means that there is no outward quark current accross
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(a) (b)

Figure 3.2 The boundary conditions (a) For the color electric and magnetic
fields, n X B = 0, 1i - E = 0 on the interface. (b) For the electric and magnetic
fields, n X E = 0, nn - B = 0 on the interface.
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3.5 THE STATIC SPHERICAL M.L.T. BAG

The M.I.T. bag model is particularly simple in the spherical, static ap-
pmxjmation and is often used in other applications. The Han;iltonian ‘Ic))f
the three-quark system in the bag may be deduced from the Lagrangian
(3.2.7). For massless quarks in the ground state, the mass of the babrg on
(N or A)is ’
3% 2.04 ﬁr.BR‘g . 3x0.117a, % Zy

M(R)=—% 3 R R

(3.5.1)
Here the first term is just the kinetic energy of the three quarks in a cav-
ity of radius R, see Eq. (2.5.5) and Table 2.1 . The second term may Ee
interpreted as the extra energy needed to create the perturbative vac;mm
of volume V, and the third term is the hyperfine interaction discussed in
Section 3.3, which lowers the nucleon mass relative to the delta. T};e last
term Zy/R is supposed to take care of all effects which are difficult éo
calculate — like zero-point energy, centre-of-mass correction, color mag-
netic self-energy, etc. In the static spherical model, the press,ure balanfe
equation is equivalent to minimization of M(R) as a function of R. To see
this, write Eq. (3.5.1) as .

M(V)=&V)+ BV
where V is the volume of the bag, and £(V) represents the total kinetic

and interaction energy of the quarks. Then, at equilibri
! quilibrium volume Vy =
%”Rs , the condition obf ’ ! me !

AV (Vi — 0 gives
ol
v, ~°

Whl.d.l i§ nothing but the pressure balance equation. We have, for the
equilibrium radius R = Ry, 1

oM

il I
E¥n =——-+47BRY =0 (3.5.2)

2
B Ry

;V};f??%ba]v = (6..12 - O.3§1(1$ + Z(}) for the nucleon. This shows that the
quilibrium radius Ry is determined by the parameters «a,, Z, and B.
iﬁ;(j;;ncef olf Ry determines the r.m.s radius (7*7)1/2 and the magnetic
i of the nucleon. We have noted before that the two cannot be
. simultaneously for the proton. Nor can one get the negative mean
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square charge radius of the neutron. Substituting the equilibrium congj.
tion (3.5.2) in Eq. (3.5.1) yields

167 4 apn
My = — 3 =
NTo3
and a similar equation for M,. DeGrand® et al. introduced another pa-

rameter, the mass of the strange quark, m,. Taking

B =145MeV, Zy= —1.84, a, =22 and m, = 279MeV | (3.5.4)

they could fit the masses of the ground-state baryons and mesons Tea-
sonably well, except the pion mass. The set of parameters (3.5.4) is by
no means unique, and many other sets exist.in the literature. Generally
speaking, the bag model in this simple form cannot give the correct pion
mass. It also does poorly in the description of the excited states®. But
apart from these details, there are a couple of serious drawbacks in this
model from the nuclear physics point of view. In nucleon-nucleon scat-
tering, the most well-established part of the force is the tail due to the
one-pion exchange process.- There is no provision for this mechanism in

the M.LT. version of the bag model. The other problem is the size of the

bag, which is too big. At normal nuclear matter density, a nucleon on
the average occupies a volume of about 6fm®. But this means that for
R ~ 1.1fm the bags would already touch each other at normal nuclear
density. Even moderate compression of nuclear matter in nuclear reac-

tions should then bring out quark degrees of freedom due to overlapping -

6-quark, 9-quark bags etc. But such explicit quark degrees of freedom are
not manifest in nuclear physics. These considerations prompted the de-
velopment of the chiral bag!®, where the quark-bag is smaller in size and
1s surrounded by a pion cloud. In the next chapter we proceed to develop
the idea of chiral symmetry and the chiral and cloudy bags.

Exercise 3.4: Six-quark Bags

Tt is interesting to calculate the energy of 6-quark, 9-quark etc. bags
and compare them with the corresponding nuclear masses like deuteron

etc. For example, the 6-quark bag with the quantum. numbers of the

deuteron is about 300 MeV heavier than the deutron in such calculations.

It turns out that AF), of Eq. (3.3.19) is attractive only for the nucleon .
(n=3,I =5 = 3), but repulsive for the other cases. Color singlet wave

functions for 6-quark, 9-quark etc. are of mixed permutation symmetry.
The total wave function cannot be written as a product of the color part

BR}V = gi{T\[- ’ (353)
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For B = 145MeV (Section 3.5), 7o ~ 100MeV, which is too low a
value. High energy heavy-ion collisions at Ey,y, = 2.1 GeV /A already in-
dicates proton temperatures higher than this?!. Although the counting
of hadronic states at high excitation is very uncertain, a fit to the data
may be obtained?? if 75 &~ 150-200MeV. It is believed that near the lim-
iting hadronic temperature the quarks and gluons in individual hadrons
may get deconfined and form a quark-gluon plasma. This topic is further
discussed in Section 5.5 in the context of the QCD vacuum. Ultrarela-
tivistic heavy-ion collisions of nuclei may form pockets of quark-gluon
plasma which hadronize in the time scale of 10?2 sec. For a review of
the extensive literature on this topic, see the article by McLerren?3. A
comprehensive and general review on “quarks in nuclei” is given by C.
W. Wong?1.
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