
Phys. 2b 2023, Classical failure for Photoelectric Effect

Classical Failure III. Photoelectric Effect

Experiment of Hertz (1887):

Polished metal plates emit electrons when irradiated by UV light. Energy of EM wave apparently liberates electrons.

Recall that Classical EM theory says that energy density in EM wave $E/V \propto |\vec{E}|^2$ and the UV EM wave intensity hitting the plate is $I_{UV} = \text{energy/per unit area/per sec.}$ But classical theory FAILS (see below). Enter Einstein ...

Einstein explained this effect in 1905, by using $E = nh\nu$ for the EM field (i.e. photons)

Detailed	Evn	Pogulte
Detalled	EXD.	nesuns

1. Time of e^{-} emission is "instantaneous"; *independent* of light intensity.

2. There is a frequency (or λ) threshold that varies in metals (i.e., get e^- only if $\nu > \nu_{thresh}$)

3. Kinetic energy of e^- (E_{e^-}) is independent of UV intensity but obeys $E_{e^-} \propto \nu$.

Classical Theory

Should take hours to emit e^- at low light intensity

Unexplained

 $E_{e^-} \propto I_{UV}(maybe?)$ (ν is irrelevent)

Einstein Theory

Current starts as soon as first photon hits plate (can be instantaneous)

 $h\nu_{thresh} = W_0 = \text{Work Function}$ ($W_0 = \text{energy to remove single } e^$ from given metal)

 $E_{e^-} = h\nu - W_0$

Final Grade:

 \mathbf{F}^-

 \mathbf{A}^+