Homework Set #3

Problem 2.19 Find the probability current, J (Problem 1.14) for the free particle wave function Equation 2.94. Which direction does the probability current flow?

** **Problem 2.27** Consider the *double* delta-function potential

$$V(x) = -\alpha \left[\delta(x+a) + \delta(x-a) \right],$$

where α and a are positive constants.

- (a) Sketch this potential.
- **(b)** How many bound states does it possess? Find the allowed energies, for $\alpha = \hbar^2/ma$ and for $\alpha = \hbar^2/4ma$, and sketch the wave functions.
- (c) What are the bound state energies in the limiting cases (i) $a \to 0$ and (ii) $a \to \infty$ (holding α fixed)? Explain why your answers are reasonable, by comparison with the single delta-function well.

Continue to next page

Problem 2.21 The gaussian wave packet. A free particle has the initial wave function

$$\Psi\left(x,0\right) = Ae^{-ax^{2}},$$

where A and a are (real and positive) constants.

- (a) Normalize $\Psi(x, 0)$.
- (b) Find $\Psi(x, t)$. Hint: Integrals of the form

$$\int_{-\infty}^{+\infty} e^{-(ax^2+bx)} dx$$

can be handled by "completing the square": Let $y \equiv \sqrt{a} \left[x + (b/2a) \right]$, and note that $\left(ax^2 + bx \right) = y^2 - \left(b^2/4a \right)$. Answer:

$$\Psi(x,t) = \left(\frac{2a}{\pi}\right)^{1/4} \frac{1}{\gamma} e^{-ax^2/\gamma^2}, \quad \text{where} \quad \gamma \equiv \sqrt{1 + (2i\hbar at/m)}.$$
(2.111)

(c) Find $|\Psi(x,t)|^2$. Express your answer in terms of the quantity

$$w \equiv \sqrt{a/\left[1 + (2\hbar at/m)^2\right]}.$$

Sketch $|\Psi|^2$ (as a function of x) at t = 0, and again for some very large t. Qualitatively, what happens to $|\Psi|^2$, as time goes on?

- (d) Find $\langle x \rangle$, $\langle p \rangle$, $\langle x^2 \rangle$, $\langle p^2 \rangle$, σ_x , and σ_p . Partial answer: $\langle p^2 \rangle = a\hbar^2$, but it may take some algebra to reduce it to this simple form.
- **(e)** Does the uncertainty principle hold? At what time *t* does the system come closest to the uncertainty limit?

(This is problem #2.22 in the 2^{nd} edition of Introduction to Quantum Mechanics.)