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Appendix A | Angular Momentum

A.1 Orbital Momentum

In spherical coordinates the Laplace operator is a sum of the radial and angular parts,

10 ad 1
V=2 P Al
2ar ar 12 (A1)
1 92 1 9
P=-— = — % g, (A.2)
sin# dp?  sin6 96 06
A simple transformation of variables shows that the operator in the angular part (A.1) is
nothing but the square of the vector 1 of orbital momentum (in units of h)

’

1= '_'_:ﬂ = —i[r x V]. (A3)

The orbital momentum components in spherical polar coordinates are

Lo =1 +il, = et j:—i) +i otH—a (A.4)
s =+l = c , .
s ! a0 g

= —i—. (A.5)

Obviously, the decomposition (A.1) physically means that kinetic energy can be presented
as a sum of the radial and rotational part. Being rotationally invariant, it does not imply
the specification of a quantization axis.
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A.2 Spherical Functions

Explicitly acting on a function of angles by the operator (A.1), we obtain
PF(6,¢) = I(l + 1) (6, ¢). R

This means that the functions Fj(6, ¢) are the eigenfunctions of the orbital momen=z
squared with the eigenvalue I(l + 1), where, by construction, | =0,1,2,.... One =z
construct (2] + 1) various angular functions F that are called spherical harmonics of razs -
1
V2r

withm = —I,-1+1,...,-1,0,1,...,1 — 1,1. Of course, the function (A.7) is an e:z=r
function of the operator (A.5) with the eigenvalue I, = m,

eimzp , >

Ylm(e’ (0) = (;)Im(())

LYim = mYy,. A8

By construction, all values of | and m are integer.

According to general properties of Hermitian operators, the spherical functions wit- 3
ferent quantum numbers (I, m) are automatically orthogonal, and the total normalizz—wom
will always be taken as

2 b g
-/‘doY;m'(n)Ylm(n) - / d(p/ sin0do Yy, (0, ¢)Yim(0,®) = 8118mim. A8
0 0

There can still be a phase factor in the definition of Y}, that can be fixed arbitrar™ &
conventional choice is given by the condition

Yi-m(0,9) = (-)" Y, (0,9). A3

A.3 Generation of Rotations

Consider a rotation through an infinitesimal angle « around the axis characterized > e

unit vector n. Under this rotation, a wavefunction ¥ changes by an amount proporaomall §

to dar. This transformation, R,(8e), is generated via the action of the operator (J - n.. e
projection of the angular momentum onto the rotation axis,

¥ = ¥ =[1-i( n)sa]y; ATy

here and always we measure all angular momentum operators in units of . Equammm
(A.11) is nothing more than a definition of the angular momentum operator for a gwem
system; we should find the transformed function explicitly and compare with (A.11: =
order to determine the operator J.

A finite rotation by an angle « can be achieved as a limit of a large number, N — x of
sequential small rotations by & = «/N. The operator of a finite rotation is

Rn(e) = lim [1- i() - m)a/N]" = exp [—i(] - n)a].

Here we us
mute. Rota
are the san

(Valvy) =
Therefore t
R‘rR =1=

Any unitary
U=¢C=

where the e
of the unitas

A.4 Orbita

Let us see h
momentum o
representatiq
tion of ¥/ (r) i
that before th

¥'(r) = Ry¢
For exampl
r=(x,yz)=
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r'=(rsinfa
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R.(8a)(x,y. 2)
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so that, using t
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Rz((sa)'ﬁ//(x, Y-2

It means that
(A.3).
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Here we used the fact that the rotations through different angles around the same axis com-
mute. Rotations preserve relations between the state vectors in Hilbert space: amplitudes
are the same before and after any rotation R of the entire space,

(A.13)

(Y31¥1) = (RY2IRY) = (Y2| R RYn) = (¥2lY).

Therefore the transformation operator (A.12) has to be unitary,

R'R=1= R =R. (A.14)

Any unitary operator U can be expressed as

U=é‘=)" (ic’", (A.15)

!
s n:

where the exponent is a symbolic representation of the infinite series and the generator G

of the unitary transformation, J in our case, is Hermitian.

A.4 Orbital Rotations

Let us see how (A.12) goes into the definition (A.3) in the particular case of the orbital
momentum of a particle, ] = 1. In this case it is convenient to deal with the direct coordinate
representation ¥ (r) of the particle wavefunction. The result of the rotational transforma-
tion of ¥ (r) is known: after the rotation one sees at the point r the value of the function
that before the rotation was at the point R~'r, with R~! denoting the inverse rotation,

(A.16)

¥'(r) = Ry (r) = ¢(R ).

For example, take the rotation around the z-axis through an angle «. A vector

(A.17)

r=(x,y,2) = (rsinf cosg,rsinf sing, rcos )

goes into

r' = (rsinf cos (¢ + a), rsin@ sin (¢ + @), r cos ),

or, in the limit of the infinitesimal S«,

(A.19)

R (8e)(x,y,2) = (x — da y,y + da x, 2).

The arguments of the transformed function in (A.16) correspond to the opposite rotation,

so that, using the linear momentum operator in the coordinate representation, p = —ihV,
we get
o , Y Y
R (8a)¥r(x,y,2) = ¥(x + Say,y — da x,2) = ¥(x,y,2) + da Yj; - x,v)—
C C y

= {1 — (i/Mda(xpy, — ypx)}¥ = {1 —idal}y. (A.20)

It means that the generator of rotations (A.11) is here the orbital angular momentum 1,
(A.3).
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Our definition (A.16) of the rotation implies that we rotate a physical object (“active”
picture). Rotation of a coordinate frame is equivalent, from a viewpoint of transforma-

tions, to an opposite rotation of the system (“passive” picture). The corresponding rotation

operators would be conjugate to ours (A.16).

We can compare this procedure with a simpler case of the linear momentum p that

is the generator of translations D(a), when the coordinate r of the object is shifted by a

constant vector a, and the new function after the shift comes to the point r from the point

r—a,

(A.21)

D@V (1) = ¥'(r) = ¥ (r —a).

For an infinitesimal translation, a — §a,

Y'(r) = Y(r) — (da- V)Y (r) = :1 - %(Sa . p)} Y (r). (A.22)

Comparison with the rotational case (A.11) shows that the linear momentum (in units
of h) is the generator of translations. A finite translation D(a), analogous to (A.12), is a
product of an infinite number of infinitesimal translations,

D(a) = e~ (i/T)(a-p)_ (A.23)

Since the translations along different axes commute, here it is not necessary to take all

small shifts §a along the same direction.

A.5 Spin

The result of a rotation in general cannot be reduced to the explicit coordinate transfor-

mation (A.20). The wavefunction may consist of several components that undergo a linear
transformation between themselves, in addition to the transformation (A.20) of their coor-
dinate dependence. Such components describe different possible intrinsic states of an
object and usually are referred to as spin degrees of freedom. If S is the vector generator
(A.11) of this transformation, the whole effect of the rotation onto the wavefunction of a

system is described by the total angular momentum,

(A.22

J=L+S,

where L generalizes the single-particle orbital momentum 1 of (A.3) for an arbitrary system.
For a many-body system, the global rotation acts on all particles in the same way so tha:

the total momenta are additive combinations of the single-particle ones,
]=Zia' L:Zlu, S:ZSuv iu:lu+su- (A.ZS
a a a

As a natural example we consider a vector function V(r). At each point r we have three

functions V;(r), but they are components of the same vector object. Under rotations no:
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only should each of these functions be transformed as we have seen earlier but, apart from

that, the components V; are transformed among themselves, as would occur even for a
constant vector V with no coordinate dependence.
For an arbitrary rotation R we have

RVi(x,y,2) = V{(R"'x, Ry, R 12), (A.26)
where the notation V' means that the components of the vector also undergo a transfor-
mation. As we have seen in (A.19), for an infinitesimal rotation R — R:(3a) by an angle
da around the z-axis,

R’]x:xif—&xy, R‘ly:y-b‘ax, R'z2=2z (A.27)

This shows what argument is to be taken for the vector as a function of the coordinates in
the right-hand side of (A.26). On the other hand, in addition to this parallel transport, the
vector V itself rotates around the z-axis by an angle 8« so its azimuthal angle ¢ changes
to ¢y + da (the angles with subscript 0 are those of the direction of V rather than of the

coordinate point r). Then
Vy = [V]sin6y cos (¢ + da) ~ Vi — daV, (A.28)
and, analogously,

Vi,x Vy+8aV,, V.=V, (A.29)

The result of the transformation of the components (note that it again has a sign corre-
sponding to an active rotation opposite to that for the arguments of the wave function) can
be expressed as an action of a 3 x 3 matrix Sz on a column of the components V;,

R:(6a)V =(1-isaS,)v, S.=| i o o |. (A-30)

The total infinitesimal transformation of our vector function is given by

Rz(8e) Vi(r) = Vi (x + yba,y — xba, 2)

= Vi(x + pSa,y — xdat, z) — da Vy(x + yda,y — xda, 2), (A.31)

or, collecting all terms of the first order with respect to da,

Ve dV,
R;(8ar) Vi (r) = Vy(x, Y, 2) = daVy(x,y,2) — Sa (x ‘ayx (3x )

(A.32)
[n operator form this means that for the vector field

Re(8er) =1 = ida(S; + L) = 1 — idar],, (A.33)
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where the orbital momentum L is, as usual, —i[r x V]. Finite rotations require the expo-
nentiation of the total angular momentum operator, as in (A.12). We need to stress that
the operators S and L act on different variables and therefore always commute.

A.6 Ladder Operators

We now consider the one-dimensional case of a particle described by a coordinate x and
conjugate momentum p, operators with the standard commutation relation

[x,p] = ih. (A.34)

The operators x and p are Hermitian. Instead we can introduce their non-Hermitian linear

combinations

1 , y 1 '
a= m(ux—f—lp), a' = ﬁ(vx ip), (A.35)

which are Hermitian conjugate to each other. In (A.35) we introduced an arbitrary posi-
tive constant v of dimension (mass/time), which makes the new variables a and a' dimen-

sionless.
The Heisenberg-Weyl algebra (A.34) is translated to the new variables (A.35) as

[a,a*l:l.

The operator product of these operators,

N=a'a,

is Hermitian and in terms of the original variables equals

2
VX
s

2

’

N =

N = i(v:rc —ip)(vx +ip) =
2v

where the commutator (A.34) was taken into account. With a specific choice of

V= mw, (A.39:

we come to the Hamiltonian of a harmonic oscillator with mass m and frequency «

presented in the form

2,2

2

mw*x P 1

—=ho(N+ =), A.40
2 +2m U( +2) (

H =

although the entire construction is meaningful independently of any oscillator system.
The ladder of the eigenvalues of N can be built if one notices that

[a,N]=a, [a',N]=—a. (A.41
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Thus, N has a spectrum {...,n—1,n,n+1,...}, where n is an eigenvalue at the point
where we have started building the ladder. The specific features of the ladder in this case
are determined by the fact that the operator N is positively defined. Indeed, for any state
|¥) we can construct the state |/,) = a|y/) and see that the expectation value of N for the
state |) reduces to the norm of the state |,) and therefore it is not negative:

(VINIY) = (¥la'aly) = (Yalva) = 0. (A42)

Together with (A.38), this shows that for any state of a particle and any value of the positive
parameter v,

<ux + 2> h, (A.43)

an alternative form of the uncertainty relation. The minimum of this relation is achieved
at the ground state of the harmonic oscillator, (A.39) and (A.40).

Equation (A.42) implies that all eigenvalues n of the operator N are non-negative, n > 0.
The expectation value (A.42) can vanish if and only if the norm of |y,) vanishes, that is,
this state is the zero vector. Let us call the state |v/) annihilated by the lowering operator
the vacuum state and denote this state as |vac),

[¥) = Ivac) = |¥a) = a|vac) = 0. (A.44)
For the vacuum state
(vac|N|vac) = 0. (A.45)

On the other hand, any state can be represented with the help of the complete set of the
eigenstates of a Hermitian operator. Taking the family of the eigenstates |n) of the operator
N with the eigenvalues n as a basis, we can write down for the vacuum state

vac) = )~ C¥c|n). (A.46)

n

Then (A.45) shows that
Z |CY*2n = (A47)

Since all n > 0, this is possible only if for the vacuum state
C*¢ = 8u0 — |vac) = |n = 0) = |0), (A.48)

the vacuum state is an eigenstate of N with eigenvalue n = 0. Because of (A.44), the ladder
cannot continue down from the vacuum state: this would bring us to impossible negative
eigenvalues of N. But applying the raising operator a' we can go upstairs in steps by
An =1 with no restriction. Thus, the ladder is limited from below but any integer n > 0
is an allowed eigenvalue of the operator N.
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In order to complete our algebraic consideration we have to build explicitly the set of

eigenstates |n) that satisfy the following equations (now we can label the states by the

eigenvalues of N):

Nin) =nln), aln) =puln—1), a'ln) = jiuln+1). (A.49)

Here we assume that the states are normalized,

(n'|n) = 8w, (A.50)

so that the factors u,, and i, are unknown matrix elements interrelated by the Hermitian

conjugation,

Hn = <n - ]Ialn), /‘zn = <n+ ]laéln) = (n{a|n+ 1)4 = “:1-'—1' (ASI)

For a consistent determination of the matrix elements we need a nonlinear relation. For

example, we can take the commutator (A.36) or the definition (A.37) of N,

(n|Nln) =n = (nta%!n + 1)(n + 1laln) = |I-ln|1‘4 (A.52)

The phase of the matrix elements remains arbitrary. Indeed, the commutator (A.36), which
determines the Heisenberg-Weyl algebra, does not change under a phase transformation

a—a =ae’ a —a =a'e™ (A53)

with any real value of «. The transformations preserving the operator algebra can be
called canonical in analogy with classical mechanics. Therefore the matrix elements can

be determined up to an arbitrary phase. The simplest choice is to make them real,

Uy = Jn, fn =A/n+1. (A.54)

Now we can recurrently construct the entire ladder starting from the vacuum state |0) and

raising n:

a'l0) = 1),

_ @y

at|l) =v22) - |2) = a—‘1>
- V2l 2

and so on. The general recipe is evident,

0> , (A-56)

(a )H

n) = —=

~n

Parenthetically we can mention that the structure of the spectrum we obtained is that
of noniteracting but indistinguishable quanta, and the quantum number n can be inter-

0>. (A.57

preted as a number of quanta in the quantum state |n). This approach is used in the

general procedure of secondary quantization applicable to the general case of identical par-
ticles treated as quanta of a quantum field. The quantal picture attributes an importan:
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I explicitly the &= o

physical meaning to formal relations (A.49) and (A.54). Now we can rename raising and
bel the states o =

lowering operators into those of creation and annihilation of quanta, respectively. The
annihilation operator a may describe the absorption of quanta. The probability of this pro-
cess is proportional to the square of the matrix element |p,|? = n, that is, to the number

=0 of available quanta (they are indistinguishable). The probability of the inverse process of
radiation of a quantum is proportional to |fi,]2 = n + 1 and contains, along with the spon-
taneous radiation independent of the number of quanta in the system also the effect of the
23D

induced, or stimulated, emission that is proportional to n. This effect is at the heart of laser

physics.
ed by the Hermi=z=

L ST

A.7 Angular Momentum Multiplets

Mn_mr relation. Fz As clear from elementary geometric arguments, the result of two consecutive rotations
XN, around different axes depend on their order—the corresponding rotation operators do not
commute. Using the explicit expression of the orbital momentum components as in (A.4)
and (A.5) we obtain
mtator (A.36). wr=

@se transforma=-~- [, bl = ijinln, (A.58)

(A 3:

Since the commutation relations reflect a geometrical connection of rotations, they

should be the same for any angular momentum operator J, spin or orbital, single-particle

tor algebra can : or many-body,

Btrix elements cz-

e them real. Uy Jel = i€jen]n- (A.59)

(A3 It is worthwhile to notice that the linear momentum components pj commute since

these operators generate the shifts of Cartesian coordinates (A.22), and the results of
two consecutive translations performed in different order coincide (the abelian group of
translations in contrast to the non-abelian rotation group). As follows from the algebra
(A.59), different components of ] cannot simultaneously have certain values.

The most important new element that appears in this algebra compared to the sim-
ple case of the previous section is the possibility to construct an operator C, the so-called
Casimir operator, that commutes with all generators J;. Of course, any function of C also sat-
isfies this condition but a more complicated algebra can have several independent Casimir

operators. It is easy to see that the absolute value squared of the angular momentum plays
the role of the Casimir operator,

cuum state 0 ar.c

(A5
_ e =i+ 1} + 2] =o. (A.60)

re obtained is tha-

er n can be inter-

ich is used in the

se of identical par-

ites an important

One of the projections, let us say J., and J? can have certain values simultaneously. As we
have seen for the orbital momentum, this characterization is associated with the choice
of the quantization axis and therefore with the apparent violation of rotational symmetry.
The symmetry is restored by the potential possibility of rotation to another frame.
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Analogously to (A.35), instead of two Hermitian components of the angular momentum
in the plane transverse to the quantization axis, J, and J,, we introduce two new operators.

Hermitian conjugate to each other,

(A.61)

Je=Jcxily, Jr=(J)"

According to (A.59), these operators satisfy

s Jzl = 25, (A.62)

[J-.J+1 = =2].. (A.63

The first relation (A.62) is of the ladder type, (A.41). Starting with a state with a certain
value M of the projection J, the operator J_ lowers this eigenvalue, M — M — 1, whereas
J+ raises M, M — M + 1. Let the initial state, apart from M, have also a certain value of

J2. The Casimir operator commutes with J;; therefore all states encountered along the

ladder of various values of M still belong to the same value of J2. Geometrically it means

that J; generate small rotations around the perpendicular axis that change the orientation

(projection J, = M) of the angular momentum vector relative to the quantization axis but

do not change the absolute value that is invariant under rotations and characterizes the

ladder as a whole.
Consider the ladder family of the states with a given value of J? and various values of

M. Since for any state

C=(P)y=(R+L+]) =D=M, (A2

the ladder cannot be infinite, it ends (in both directions) at some limiting values M.
and M. These values are determined by the value C of the Casimir operator for the
family under consideration. At the upper (lower) end of the multiplet the action of the

raising (lowering) operator should give zero, similarly to eq. (A.44) for the Heisenberg-
Weyl algebra. Using the equivalent expressions for the Casimir operator that follow fror
(A.60) and (A.63),

22, 1
J —fz+2(]+f— +J-J+)

=J-+=J=]-J++]i 4] (A-65

having in mind that the expectation value of C is the same all over the ladder, and applying
two last forms of (A.65) to the states with M, and M.y, respectively, we obtain

C= MZ — Mmin = M,anx + Mmax- (A-%

min

The appropriate solution for Mpin iS Mmin = —Mmax. The maximum possible projectioz
Mmax Will be denoted as J. Usually this number is simply called “angular momentumn_~
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We see that the value of the Casimir operator J? in the multiplet | JM) is larger than the
squared maximum projection M2 = J2. This can be interpreted as a consequence of the
uncertainty relation. In the state with the certain values of J? and J,, the noncommuting
with J, transverse components ], , of the angular momentum cannot have definite values
which would be the case if one could align the vector ] along the z-axis, J* = J2 = MZ,,. The
difference is due to the quantum fluctuations of J7 + J7. In other words, it is impossible to
construct a state with a certain value of the angular momentum and a certain orientation
in space, for example, along the quantization axis. The uncertainty relation (AJy)(AJy) =
I{J)|/2 is similar to the relation between a coordinate x and conjugate linear momentum
px. From classical mechanics we remember that the angular momentum components are
conjugate to angular coordinates.

Starting from the lowest state Mpin = —Mmax = —J and applying the raising operator
], one can construct the entire ladder. The number of steps k from M = —J to M = +]
is always integer and equals 2J. Therefore only integer and half-integer values of | are
possible. Correspondingly, the values of the projection M along the ladder are all integer
or all half-integer. They can be labeled | JM) by the common value J (the family name) and
the individual tag M (the first name of the family member), where —] < M < +J. The
total number of states in the family (multiplet) | M) isk+1=2] + 1.

Now we can find the matrix elements of the generators inside the multiplet | JM). Being
the eigenstates of the Hermitian operators J? and J, the states | JM) are orthogonal and
assumed to be normalized,

(J'M'|JM) = 8)8prm- (A.68)

The operators ]+ connect the adjacent states in the multiplet,
J£lJM) = pa(JM)| JM £ 1),

where, as a result of Hermitian conjugation,

u(JM) = ws (JM — 1), (A.70)

Taking the expectation value of the Casimir operator (A.65) in an arbitrary state | JM), we
find the absolute values of the matrix elements p4(JM). Their phases remain arbitrary,
and as we did earlier in (A.54), we take them real:

pe(JM) = (JFM)(JEM +1). (A71)

Thus, the Cartesian components of the angular momentum have simple selection rules
with respect to quantum numbers of the states in the multiplet:
(M| Jx|JM) =

(1+(JM)Sppr g1 + - (JM)Snr m—1) 8, (A.72)

N =

(M| Jy| JM) = %(N-&-(]M)(SM',MH — - (JM)8nr,M-1)8y) (A.73)

(J'M'| J2| JM) = M8pmdyy. (A.74)
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The physical image corresponding to the state | JM) is that of precession of the angula-
momentum vector around the quantization axis z, then J? and J, are fixed, the expectatior.

values (Jy) and (J,) are averaged out and vanish, and the expectation values of J2 and -

are positive.

A.8 Multiplets as Irreducible Representations

Any rotation can be represented as a function (A.12) of the generators. None of them ca=

change the magnitude J: starting from a state | JM) and applying various finite rotatiors

we are always confined to the family of states with different M and the same J. Thus. a=

state | JM) transforms under rotation R into a superposition of the states belonging to ==

same multiplet | JM). This fact can be written explicitly as

RIJM) =3 Dy (R M), (A7
M’

where

Dl (R) = (JM'IRI JM) (A=

are matrix elements of the finite rotation R in a given representation; here we take i~
account that the states | JM) with different values of M are orthogonal and assume ==

they are normalized (A.68). The unitarity of rotations implies the unitarity of matricss
(A.75),

pJ(D)y" = (D))’ D! =1,

or, explicitly in matrix elements,

Y Din(RIDE(R) = Skks Y Dl (R) Dy (R) = Spprm. (AT
M K

In algebraic terms, matrices (A.76) give a unitary representation of the rotation group =

the dimension 2] + 1. It means that for a rotation performed in two steps, R = R,R-. =

corresponding matrix (A.76), D/(R), is the matrix product of the matrices represen==z

individual rotations performed in the same order,

DJ(R) = D/(Ry)D/(Ry). (&7

All geometric properties of rotations are adequately reflected in relations between ==

corresponding matrices. Thus, the unit matrix corresponds to the rotation by zero angee

and for the inverse rotation D/(R™!) = (D/(R))~!. The representation D/ is irrediciac

the multiplet | JM) of dimension 2] + 1 does not contain any smaller subset of states ~~.zr

transform only within this subset under all rotations.
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A.9 SU (2) Group and Spin 1

The orbital momentum 1 generates multiplets with an integer | = 1. The spin angular
momentum s can take both integer and half-integer values. We can understand the physical
reason for this difference. Under rotation (A.12) around the z-axis, the wavefunction of
the state | JM) acquires a phase,

R:(c)| JM) = e =| [M) = e~ ™| [M). (A.80)

This determines a particular matrix element

DL, (Ro(@)) = e ™My, (A.81)

Consider rotation through an angle « = 2. The states with integer | do not change,
exp (—i2w M) = 1, but the states with half-integer ] gain a factor —1. As we have seen, the
orbital momentum transforms the explicit coordinate dependence of the wavefunctions.
Since the directions marked by the angles 0 and 2x physically coincide, a single-valued
wavefunction has to be periodic as a function of angles with the period 27, that is, it
should have integer angular momentum. Spin wavefunctions are not explicit functions of
coordinates, so the requirement of periodicity is absent. Since the physical predictions are
given in terms of the amplitudes, which are bilinear in wavefunctions, the double-valued
representations of the rotation corresponding to a half-integer spin are allowed.

Spin § plays an exceptional role because the objects with | = s = ] are the most funda-
mental ob]ects in nature. The main building blocks of matter, electrons and quarks, have
spin 3. Combining constituents of spin J one can construct an arbitrary high angular
momentum . The spin-1 objects realize the lowest nontrivial representation of the SU(2)
group with dimension 25 + 1 = 2. In a general SU(n) group the fundamental represen-
tation of dimension n describes similar basic constituents (the simplest nontrivial set of
objects which is irreducible under all group transformations).

Our canonical basis yy = | J = 1/2, M) consists of two basis vectors, M = :h%. Some-
times it is convenient to call them “spin up,” x1/, = x, =1, and “spin down,” x_1,; =

—i All operators in this space are 2 x 2 matrices. The algebra (A.59) is satisfied with
s = 10, where the components of o are Pauli matrices

Oy = , (7)‘. — ) , 0, = . (ASZ)
1 0 i 0 0 -1

Itis easy to check the commutation relations (A.59) and the matrix elements (A.72)—(A.74);
the matrices are traceless.

Together with the unit matrix, the matrices (A.82) form a complete set of four indepen-
dent matrices in 2 x 2 space. In particular, their products are again matrices of the same
set. This allows one to accumulate the entire spin algebra in the identity

0401 = 8y + I€41n0yp. (A.83)
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It follows that any operator function of Pauli matrices oy can be reduced to a linear expres-
sion. The first term of (A.83) is Hermitian and symmetric in vector subscripts k,I; the

second one is anti-Hermitian and antisymmetric. Frequently one has to deal with scalar

products a - ¢ of Pauli matrices with (nonmatrix) vectors. Then (A.83) gives

(@a-o)(b-o)=(a-b)+ilaxb]-o. (A.84)

According to (A.84),

m-0)’=n’=1 (A.85)

for any unit vector n.
In the representation (A.82) the matrix o, = 2s, is diagonal, and taking the basis states
x+ as the eigenstates of o, with the eigenvalues +1, we obtain our canonical angular

momentum basis with z as the quantization axis. In the representation corresponding to

the matrices (A.82), the basis states |1/2 m) are two-component columns

(1))

Such objects implementing the fundamental representation of the SU(2) algebra are called

(A.86)

spinors. Any state of spin 1 can be represented as a superposition a, x4+ + a_ x_ of basic

spinors (A.86) with the upper (lower) component a, (a_) giving an amplitude of finding

the value of s, equal to J (3). Starting from the state x., (spin polarized along the z-axis) and

applying various rotations exp —(i/ 2)(0 - n)a, one can get states with any spin orientation.

A.10 Properties of Spherical Harmonics

A.10.1 Explicit derivation

The spherical harmonics Y, (n) = Yi, (9, @) are the eigenfunctions of the orbital momen-

tum operators 1? and I, and therefore they transform among themselves under rotations

generated by the orbital momentum I, (A.11), (A.16), and (A.75), according to an integer

irreducible representation, | = I (integer), J, = m = —1I,..., +1.
Given the coordinate frame with the quantization axis z, we define the polar, 6, anc

azimuthal, ¢, angles for any direction n. Using the general recipe (A.16) and the result

(A.80) for rotation around the z-axis, we obtain

Ry (@) Yim (6, 9) = Yim(0, 9 —a) = e~ ima Yim (0, ). (A.8™

The second equation (A.87) determines the universal periodic dependence of spherica’
functions on the azimuthal angle, (A.7). As it should be, the raising and lowering operators
(A.4) change the g-dependence of the functions (A.87) in an appropriate, way adding the
factor exp (+ig). The Casimir operator I is, in this representation, the angular part (A.2:

of the Laplace operator.
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Since the upper state with m = | is annihilated by the raising operator, we should have

LYy = 0. It gives the simple equation of the first order for ©y(0) defined by (A.7),

e
W“ =lcoth®y. (A.88)

The solution of (A.88) normalized in accordance with (A.9) is

!
Ou(d) = (21+1) 2,17 sin’ . (A.89)

The larger [ is, the more this function becomes co
which characterizes the semiclassical orbit in the
the angular momentum.,

ncentrated near the equator, 6 = 7 /2,
plane perpendicular to the direction of

Now we can act by the lowering operator I_, (A-4), and go down to all members of the
multiplet. Using the matrix elements (A.71), we obtain

1 _[_O+my P2
Yy = EL Yu,..., Yim = ':(I_—‘m)!(zl).’} (=)~ 1. (A.90)

After simple algebra, the result can be ex

pressed in terms of the associated Legendre
polynomials Py, (x),

m[20+1 (1= m)17"2
O (6) = (-) [T((le))'} Pin(cos ), (A.91)
m(+mr 11 d-m
P, ,‘,9:_lm( o S 2l , .
im(cos6) = (=) (= m)! 211 5in™ 6 (dcos gy S ¢ (A-92)

where the so-called normalization according to Condon and Shortley [CS51] was used which

implies the symmetry properties (A.10). Note that the definitions by various authors can
differ in phase conventions.

A.10.2 Legendre polynomials

For the forward angles, 9 — 0, a regular function of angles, as Y},, cannot depend on
@ since the azimuthal angle is not defined for 9 = 0. Therefore all Y,,, vanish at § — 0
except for Yy, which does not carry any g-dependence. At m = 0 the asso.

ciated Legendre
polynomials (A.92) reduce to the ordinary Legendre polynomials,

Pi(x) = Py(x), (A.93)

so that

[2l+1
Yio(n) = —4_;“1’1(0050).

(A.94)




416 | Appendix A

Itis easy to see from (A.92) that all Legendre polynomials are equal in the forward direction,

P(1) = 1. (A.95)

Hence, for the direction along the quantization axis,

PrE)
Ylm(() = 0) — 8»110 V" ‘Z? (A96)

The Legendre polynomials are orthonormalized on the segment from —1 to +1,

oyi- (A.97)

1
2
D, D -
f]dxl,(x)l,(x) T

The first four polynomials are

Po(x) =1, Pi(x)=x, Pyx)= %(3:& —1), P3(x)= %(Sx‘ - 3x).

A.10.3 Completeness

The set of spherical functions Yj,, (6, ¢) for all | and m is complete, so any regular function

of angles can be expanded over Yj,,. The coefficients of the expansion can be readily found

with the aid of the orthonormality conditions (A.9). Azimuth-independent functions of

cos 6 can be expanded into a series of Legendre polynomials with the help of (A.97). For

an arbitrary function of angles F(n), the expansion is

F(n) = Z F!m Ylm (n) (A()g'

Im

According to (A.9),

Fim = / doY,; (n)F(n). (A.1001

Inserting (A.100) back into the expansion (A.99), one obtains the identity

F(n) = / do'F(n') ) Ypr (0) Yim(n).

Im

Therefore the completeness of the set of spherical harmonics can be written as

> Y5, () Yim(n) = 5(n — n'). (A.102

Im

Taking n’ = e;, the unit vector along the z-axis, and applying (A.94) and (A.96), we ge:

another useful relation,

D @I+ 1)Pix) = 4ms(x - 1), (A.103
1
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showing that the Legendre polynomials cancel each other in all directions except for the

forward one.

A.10.4 Spherical functions as matrix elements of finite rotations

The spherical harmonics Y}, (n) are the wavefunctions in the coordinate representation of

the states |Im) (described in the frame with the fixed quantization axis),

Yim(n) = (n|lm).

(A.104)

Let R be a rotation that brings the directional vector e, of the quantization axis to a new
direction n,

Re. = n(0, ). (A.105)

The rotation R™!, inverse to that in (A.105), acting on the state |lm), transforms it into a
superposition of the multiplet states according to the general rule (A.75):

R™Ym) =% "D, (R7")|lm'). (A.106)

The coordinate representation of this equality is obtained by the projecting on the localized

state vector ny,

(no|R~'[Im) =" D}, (R"")ngllm') = > Dhy(R7") Yigy (o). (A.107)

m’ m'

Due to unitarity of rotations, the left hand side here is

(ng|R™|lm) = (Rng|lm) = Yi,(Rnp). (A.108)

The direction ny is arbitrary. Taking this function in the direction of the polar axis, ng — e,,
we come to Y}, (Re;). that is, the spherical function of the original angles 6, ¢, (A.105). In
the right-hand side of (A.107) we can use the result (A.96) for Y}, (e.). This leads to the
connection sought for,

[21 +1 [2l+1
Yin(0) = \/ =—Dow(R™") = \| =, —Dii(R), (A-109)

where the D(R™") is the matrix element for the rotation that, inversely to (A.105), brings

the vector n to the direction of the polar axis, and the second equality uses the relation be-
tween D(R) and D(R™') = D'(R). The Legendre polynomials, (A.94), are

P(cos@) = DLy(R ') = Diy(R). (A.110)

A.10.5 Addition theorem

Frequently one needs a scalar function of an angle y between two directions, n(¢, ¢) and
n'(0’, ¢'). Being a scalar, such a function is in fact a function of the scalar product (n - n’)
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and can be expanded with the use of the Legendre polynomials Py(cos y), where

cosy = (n-n') =sinfsind’ cos (¢ — ¢’) + cosB cosh'. (A.111)

Using the rotation transformation properties of the spherical harmonics one can prove
the addition theorem for spherical harmonics,

Pn-n)= " 3" Yim(n) Yy, () A112)
: T a1 a mEm T (A
As a particular case, for coinciding n and n’,
2l+1
Rk (A.113)

Y, 2=
;| im (M) 47
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