Appendix ?\ Angular Momentum Coupling

B.1 Tensor Operators

B.1.1 Transformation of operators

If the state vectors |/) are transformed by a unitary transformation U into |¢') = Ul¥),
and the operators O are transformed according to

0= 0 =UoU, (B.1)

all physical amplitudes are preserved,

W4O'¥) = (Y2l U UOUT UlYn) = (¥2101Yn).- (B.2)

It means that the new operators O’ play exactly the same role in the new conditions as
the old operators O did before the transformation. In other words, when applied to rota-
tion (U = R), we made the operatorsrotate along with the system so that physical measure-
ments by the rotated tools give the same results.

The operators can be classified by their behavior under rotations in the same way that the
state vectors were subdivided into rotational multiplets according to their transformation
properties. The set of 2] + 1 operators Tjm, where | is an integer or half-integer and
M =—J,—]+1,...,], is said to form a tensor operator of rank J if the operators of the
set are transformed under rotations according to the same rules (A.75) as the state vectors

M),

RTMR™' =Y Dl (R Tjne- (B.3)
v

For integer ] = I, the tensor operators Tin have to transform as spherical functions
Yi,.. In the case of a spinless particle, the tensor operators Tim (r), which are functions of
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coordinates, should have the same angular dependence as Y}, (n),

Tfm (l’) = tl(r) Yfm(n): (B4)

where the radial factor t(r) is the same for all m. In this case it is easy to check directly

that the transformation rule (B.3) preserves amplitudes (B.4). Indeed, as we know from
(A.16) and (A.101), the transformation (B.3) for the function of coordinates (B.4) should
give Tj,, (R~ 'n). (Remember that here we transform an operator; the first factor R on the

left-hand side of (B.3) transforms only Tjy and cancels R ! so that all functions placed

after Tjy are not affected.) The transformed matrix element (B.2) differs from the original

one merely by the change of angular variables n — R™'n in the integrand, which cannot

change the integral. A similar conclusion holds for the functions of the momentum, which

will be proportional to Yy, (np), where n, = p/|p|.

B.1.2 Scalars and vectors

Any function of coordinates can be represented by a series of spherical harmonics with

coefficients depending only on r. This is equivalent to an expansion over irreducible tensor

operators. The lowest term, | = 0 or s-wave, is proportional to the spherical function

[1 )
Yog = V‘ E (B.)

and does not depend on angles. It is not affected by rotations (Tgo ~ Yoo is scalar).

There are 3 p-wave functions, | = 1,

3 [3 i
Yi0 = \"”/E cost, Yy = ;\/ - sin@e™'?. (B.6

For any vector V we can introduce, instead of Cartesian components V; = (V,, V,, V.), the

so-called spherical components V,,,, m = 0, +1:

1 , -
V(): V,, V+| :;—(VX:&:LV),). (B

’ V2

Note that the spherical components ] of the angular momentum differ only by a factor

F1/+/2 from the lowering and raising operators ]+, (A.61). From (B.6) and (B.7) we see

that the functions Y,,(n) are essentially the spherical components of the vector n,

/'3
,/— M (B.8

V 4rn

Y] m(n) =

The scalar product of the vectors in Cartesian coordinates can be also expressed in terms

of the spherical components (B.7):

@b)= > (=) "anb_n. (B.9

m=0,£1

Note, that for unit vectors (B.9) is merely a particular case of the addition theorem (A.112
forl =1.
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All vectors behave in the same way under rotations. Therefore we conclude that any
vector operator is a tensor of rank 1. The coordinate vector n is an example of a polar vec-
tor. Its components, together with the spherical functions Y3,,, change sign under spatial

inversion.

B.1.3 Tensors of rank 2

Let us consider 9 quantities Tj; = a;b; constructed of the Cartesian components of vectors
a and b. They are reducible under rotations and can be grouped in smaller irreducible sets.
First we separate two parts with different symmetry (submatrices which are symmetric,
S, or antisymmetric, A, under a transposition of matrix indices),

le = S,'I' +A,']' = %(a,bj + ajb.‘) + %(a;bj - ajbi)- (B.10)

The symmetric part S;; is further reducible since the trace Tr S = S;; = (a - b) is a scalar.
We can subtract the invariant scalar with a coefficient such that the rest are traceless,

S,j = %(a . b)by + Q‘J (B.11)

The symmetric tensor

Qi = 3 (aibj + ajb; — 5(a- b)3y) (B.12)

is traceless, Tr Q = Q;; = 0, and irreducible. It has 5 independent components. The anti-
symmetric part

Ajj = F(aib; — ajb;) = j€iela x b (B13)

has 3 independent components. It is equivalent (with respect to rotations) to a vector
[a x b]. If both a and b are polar vectors (previous paragraph), the components of their
vector product do not change sign under inversion of spatial coordinates. Such a vector is
called an axial or pseudovector; as an example we can recall the orbital momentum (A.3).

Summarizing, the decomposition of the reducible tensor Tj; into irreducible parts S, Ajj,
and Qj can be symbolically presented as

3Ix3=1+3+5 (B.14)

where the underlined numbers designate the dimensions of representations.

In order to understand the rotational properties of the symmetric tensor (B.12), we
have to compare its transformational features with those of spherical harmonics. Since
all vectors transform in the same wayj, it is sufficient to consider the casea = b = n(0, ¢).
Then we can establish a one-to-one correspondence between the spherical functions of
the second rank Y,,,(n) and certain linear combinations of components Q;,

[ 5 o 2 2 J"T
Yyo(n) = \‘/ T();(Z cos“f —sin“0) = Vi

(ZQ:Z - Qxx - ny)’ (B].S)
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[15 . .- 5 /3 ,
Yy+1(n) = :F\/‘ - cos @ sin fet? = \/;7 /;(Q,\*z +1iQy), (B.16)

s o
Y;_fz(n):\/Esm Bty oV 5(Qex £2iQ0 — Q). (B.17)
Inversely, the components Qjj are linear combinations of Y5, (n) and therefore correspond
to a tensor operator of the second rank. The five combinations on the right-hand side of
(B.15-B.17) are organized in such a way that they form a spherical tensor

[ 4
Q_Zm 0.8 ?T[Yzm(n)- (B]S}

The conclusion is that any set of 9 quantities Tj; which transform under rotations as a
product of two vectors can be decomposed into scalar, vector, and symmetric second rank
tensor parts. The procedure can be extended for any tensor Tiy  ~ a;bjc. ...

B.1.4 Introduction to selection rules

Tensor properties of the operators are important in calculations of physical amplitudes
proportional to the matrix elements (w./’ZMJ. | Tjm|¥y,m, ). For given initial and final multi-
plets of states, we have here (2]2 + 1)(2] + 1)(2]1 + 1) different matrix elements, However.
as we will see, only one number characterizes the relevant physics. The rest are completely
determined by geometrical considerations. Some matrix elements vanish exclusively due
to the rotational symmetry of the states and the operators, others turn out to be stronglv
interrelated.

The simplest selection rules can be discovered directly from the definition of tensor
operators (B.3). Let us consider an infinitesimal rotation through an angle s around the
axis n. The corresponding operator is R = 1 — i(J - m)da, (A.11). Keeping linear terms in
S, the left-hand side of (B.3) is expressed via the commutator of the tensor Tyy with the
angular momentum

RTjMR™ = Ty — isa[(] - n), Tjp). (B.19
In a given representation the matrix elements (A.70) of this rotation are
Diypi(R) = Snom — ider( JM| ) - n)| JM). (B.2¢

Since the axis direction n is arbitrary, (B.19) implies the commutation relation valid for
any tensor operator,

U Tl = Y (M| Jon] JM) Tjpg (B.21
v

where J,, can be either Cartesian or spherical, (B.7).
The J, = J, component of (B.21) reads

[Jz Tim] = MTpy.

which
comm
of spec

B.2 A

B.2.1 7

Conside
tains d -
tiplets |;
tively. T1

Ulmle

Ifthe s
(we assur
basis stat
to its ang
One can i
around th



B.17

erefore corresponc
right-hand side o
soT

(B.1&

nder rotations as =
petric second rank

oo

aysical amplitudes
al and final multi-
lements. However.
rest are completely
ish exclusively due
out to be strongly

efinition of tensor
igle o around the

ng linear terms in
msor Tjy with the

(B.19)

(B.20)

1 relation valid for

(B.21)

-

Angular Momentum Coupling | 423

This is a typical ladder relation, recall (A.41). We conclude that, acting on a state with
a certain z-projection of the total angular momentum of a system, a tensor operator Tim
raises this projection by M. We obtained the simple selection rule: in the transitions
(a2 JaM3| Tjmla1 J1 M), where a; and a; are symbols for all additional (nonrotational) quan-
tum numbers, the only nonzero amplitudes are those with AJ, = M; — M; = M,

Tim: Al =M. (B.23)

Our notation in (B.7) for the spherical components of vectors agrees with this general
rule. The result does not depend on the specific values of Ji, J,, or other (nonrotational)
quantum numbers ay, a;.

The raising, m = +1, component of (B.21) contains on the right-hand side the only
term M’ = M + 1. We see that the operator product of J;;, which has a selection rule
AJ. = 41, and Ty creates a new operator correspondingto AJ, = M + 1. For the lowering
component of (B.21), m = —1and AJ, = M — 1. In the product of operators, the selection
rules for the projection J, are simply added algebraically.

When applied to a vector operator, Ty — Vi, the general equation (B.22) gives
[Jz, Vi1] = £V4;. Obviously, the rotation around the z-axis does not change the z-
component of a vector, [ J,, V.] = 0. In Cartesian coordinates, such relations are equivalent
to the commutation relation

[Je> Vil = i€xin Vi,

(B.24)

which generalizes the angular momentum algebra (A.59) for an arbitrary vector. All such
commutation rules are of pure geometrical origin and therefore universally valid regardless
of specific nature, or behavior under inversion, of the tensor operator.

B.2 Angular Momentum Coupling

B.2.1 Two subsystems

Consider two subsystems with angular momenta j; and j,. The total quantum space con-
tains d = (2j; + 1)(2j, + 1) states obtained by combinations of various members of mul-
tiplets |jimq) and |jm,) with projections my = —ji,...,j1 and m, = —j, ..
tively. Those basis states can be designated as

.,J2, T€Spec-

| jama; jama). (B.25)

If the subsystems do not interact, all four quantum numbers jy, j,, my, m, are conserved
(we assume the rotational invariance of the whole system). Then it is convenient to use the
basis states of independent subsystems. Each system can be rotated separately according
to its angular momentum operators j; and j,, generating corresponding transformations.
One can imagine the picture of separate precession of the constituent angular momenta
around the common axis.



424 | Appendix B

We can characterize the system in a different way by probing its behavior under common
rotation when the subsystems are rotated together. The generator of such rotations is the
total angular momentum

=i+ (B.26)

In the previous picture of separate precessions the operator J has no certain value because
the result of the vector addition (B.26) depends on the instantaneous mutual orientation of
j1 and j,. The states (B.25) are superpositions of states with definite values of J2. In the case
of interacting subsystems the separate rotations in general violate structure, which makes
states (B.25) nonstationary, whereas common rotations preserve the intrinsic structure.
Then itis more convenient to describe the states by the quantum numbers ] and M related
to the generator (B.26) of total rotations, even if both descriptions use the complete set of
states being therefore mathematically equivalent.

With respect to common rotations, when the relative orientation of the subsystems is
kept intact and they rotate as a whole, the complete set of the states (B.25) is reducible.
Any possible relative orientation will give rise to a multiplet | JM) of states transforming
between each other under common rotations. We first define the relative orientation and
corresponding total momentum J (the angular momenta of subsystems precess around
J) and then allow the total construction to rotate around the space-fixed quantization axis
that defines the projection M. The z-projections my and m, cease to conserve (but absolute
values j; and j, still do because we do not change the internal structure of the subsystems).
so that we obtain the new set of states

[jyj2; JM) (B.27

that form multiplets irreducible under common rotations. For individual angular momenta
of the subsystems the effective quantization axis is now that of the total vector J. Indeed.
as seen from eq. (B.26), the state (B.27) has certain projections

(i1 -]) = JU+1) +]i (_}'12+ D) -2+ n (B.25

and similarly for (j; - J).

The relative orientations allowed in quantum mechanics are quantized in space. There-
fore the possible total momentum J, (B.26), can take only a finite discrete set of (positive
values. In any case, the new states (B.27), where each multiplet contains 2] + 1 members.
should be as complete as the old set (B.25), so their dimensions have to coincide:

d=Y"@2J+1) =dd, = 2, +1)(2j, + 1). (B.29
]

B.2.2 Decomposition of reducible representations

First we have to find all irreducible representations that taken together span the whole
space (B.25). It can be done by a simple construction which is equivalent to the standarc
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group theory procedure of finding the characters of the representations (traces of the
matrix D/).

Put all basis states (B.25) into a d; x d, table that has d; vertical columns num-
bered by my, —j; < my < J1, and d; horizontal rows numbered by my, —j, < m, < jb. For
definiteness, assume j, > j,. Each state (square of the table) has a certain value

M=m +m (B.30)

of the total projection J, = j;, +J22, (B.26). Any state |[JM) of the set (B.27) will be a
superposition of states lying on a straight diagonal line (B.30) corresponding to a given
M-value. The number of squares on this line is equal to the number of multiplets (B.27)
that include this value of the projection, that is, with angular momentum | > M.

Start with the upper right corner, M =J1+j2. This is the maximum possible total
projection. It is constructed uniquely (alignment of constituent momenta). There is only
one multiplet where this value of M gives the maximum projection so this state has the
highest possible magnitude of [ = My, = J1 + j2. This highest multiplet should have
all other members, M =] — 1, — 2,...,=] = —(j1 +J») as well.

Let us come to the next diagonal line M = Jmax — 1. There are two such states. They can
form two linearly independent combinations. One of them belongs to the highest multiplet
as was mentioned in the paragraph above. This combination | Jmax M = Jnax — 1) can be
obtained by the action of the lowering operator

J-=ji- +j2- (B.31)

on the maximum aligned state (recall that the components of J act only within the
multiplet). According to (A.71), the result is

J=ivtia M =ji+j=1) = Vajiljij = Gjajo) + VL jrisi oz - 1). (B.32)
On the other hand, this should be equal to the action of the total J-,
J=h+pM=j+p)=V2(i +)l] =ji +jo M =, +j2 = 1). (B.33)
The comparison of the last two expressions defines
— —

— 1 4 S T - ,'I;j—]"" {I/L
J=n+pM=ji+j,-1) = Viv l,JlJl 1sz12> + Vit

i1 jijaja —1). B.34
Py 22 > (B.34)

The second possible combination along the same short diagonal with M =ji+j,—1is
the highest for the second multiplet. Therefore we open the new multiplet and see that
the value of the total momentum | = j; +j, — 1 is also possible. This state has another J
and has to be orthogonal to the state (B.33), although they have the same value of M. By
orthogonality, we find

R _
. . . . / jz .. .. / j1 ‘0 e e
J=n+p-1M=ji+j)-1)= | _—77‘)]111 —Lpjp) - [—— ‘J]]l,']zjz —-1). (B.35)
Virti Vi +iz|

Here we can add an arbitrary extra phase, for example change the common sign—this is
a matter of convention.
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The next step on the way down shows three states with M = j; + j, — 2. Two of the three
combinations belong to the previous multiplets while the third one opens the new multiplet
with | = ji + j, — 2. This procedure is obvious and regular. Each step to a lower diagonal
line adds a new multiplet with angular momenta steadily decreasing. This takes place for
the last time when we reach the main diagonal, which corresponds to M = j; — j,. At this
step we open the multiplet with the lowest possible angular momentum Jmin = ji — ja.
After that the number of possible M does not increase which means that we just fill up
the available multiplets. The lowest multiplet will be full at the line reaching the left upper
corner of the table. Later on, each next step one completes one of the multiplets until we
arrive at the left lower corner with only one state M = — M., = — J1 — j» which completes
the largest multiplet J = j; + j,.

We can summarize the result of this exercise saying that possible values of the total
angular momentum J in the vector coupling of subsystems with angular momenta j; and
Jo are

Ur =2l =J <jr +ja (B.36)

Each value of ] appears only once and it is easy to check the fulfillment of (B.29): we used all
squares of our table in the rearrangement of the reducible space (B.25) into irreducible mul-
tiplets (B.27). While projections (B.30) are added algebraically, the magnitudes of angular
momenta are added geometrically; inequalities (B.36) give exactly the same boundaries
that would be valid for the addition of two Euclidean vectors (triangle conditions). However.
quantum mechanics put an extra constraint of space quantization for the total angular
momentum whose allowed values (B.36), in accordance with general rules for the SU(2)
group, are all integer or half-integer depending on the values of j; and j,.

B.2.3 Tensor operators and selection rules revisited

Electric and magnetic multipoles are typical examples of operators forming sets of 24 + 1
quantities T;, that are closed with respect to the rotation group. Under rotations such
qQuantities are transformed into linear combinations of quantities belonging to the same
set, and the rule of transformation is exactly the same as for the spherical functions Y, _.
Such a set of operators are said to form a tensor operator of rank A. The physical conse-
quences that follow from geometrical considerations are analogous for all tensor operators
of the same rank, regardless of their physical nature.

In the case of the operator proportional to a spherical function Y;,,, its action on a state
| JiMy) can be considered as a vector coupling of angular momenta of two “subsystems.”
J1 of the state and % of the operator. According to the rules of the rotation group, the fina:
angular momentum

o= +4 (B.37

can take all values [, which differ by one unit within the limits put by the triangle conditiox
(B.36),

h=A=h=sh+A (B.38
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The projections of angular momenta are added algebraically, (B.30),

M; = My + p. (B.39)

In fact, the triangle conditions (B.38) are symmetric with respect to all three angular mo-
menta Jq, J; and A.

Equations (B.38)—(B.39) determine selection rules which are exactly the same for any

tensor operator T;,,: matrix elements (a, [, M,|T;,|a1 JiM1) of a tensor operator between

any states with certain angular momentum quantum numbers (and arbitrary additional

quantum numbers a,, a,) can be different from zero if and only if the conditions (B.38)

and (B.39) are fulfilled. For example, multipole transitions of multipolarity A are strictly
forbiddenif A = |J, — il > xor A > J; + J,.
As a particular case, the angular momentum selection rules restrict multipole moments

thatare allowed to have nonvanishing expectation values in a state with angular momentum
J. Here we are interested in the diagonal elements J; = J, = J. The rule (B.38) shows that
the allowed multipoles are those of rank A satisfying

(B.40)

As follows from (B.40), a system with angular momentum | = 0 accepts A = 0 only, and

therefore can have nonzero charge (2.9) but none of higher multipoles. A system with spin

1, such as the nucleon or electron, can have A = 0 or 1, that s, charge and dipole moments,

electric (2.11) or magnetic (2.13). A nonzero quadrupole moment, A = 2, appears only for
systems with | > 1.

B.2.4 Vector coupling of angular momenta

We have found that in quantum mechanics two subsystems with rotational quantum

numbers ji, m; and j,, m, being coupled together can form systems with various quantum
numbers j3, m3 with respect to their rotation as a whole. The probability amplitudes of

different possible outputs j;, m3 of the vector coupling are given by the Clebsch-Gordan
coefficients (CGC) (jzms|jima;jam;):

[jima;amy) = Z(j3m3|jlml;jsz)l(jljZ)j.}m})v (B.41)

Jams

where the last notation reminds us of the angular momenta (j;, j;) of the constituents.
The allowed values of j3, m3 in (B.41) are given by the same selection rules (B.38), (B.39).
The CGC perform a transformation between two possible sets of basis states (two sep-

arate subsystems and the combined system). Both sets are complete, orthonormalized,

and equally good, albeit either could be more or less convenient in a given physical situ-

ation. The transformation from one set to another one is unitary, so that the coefficients

(jima;jama, | jms), which perform the inverse transformation,

Ghj2)sms) = Y Cmas amal jsms) | jima; jama), (B.42)

mymz

are complex conjugate with respect to those in (B.41). At the standard choice of phases
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for the matrix elements of the angular momentum, the CGC are real, and we will use the

notation

Jims

iomy jomy, = (J1masjama| ams) = (jams| jima; jamy). (B.43)

The orthonormalization conditions for both sets of states give

J3m3 imy o o
Z C_hmlj)'ﬂz leml,l'z?’lz - SJU;b'“i’“x

mymy

and

Y = S Sy
“fymy jamy Jumg jamy = Omam) Omam; -

Jams

B.2.5 Wigner-Eckart theorem

We have worked out the selection rules for the tensor operator T;,, related to rotational
invariance. For the angular momenta J,, J;, and A satisfying (B.38) and (B.39), in general
there are many nonzero matrix elements (we indicate explicitly other quantum numbers
of the states which are fixed for a given set of matrix elements)

(a2 oMy | Ty lay JiMy). (B.46)

All matrix elements with different combinations of projections contain the same physics.
differing in the mutual orientation of the states |a; J;M)), |a, JM;) and of the probe T;,..
That is why, for instance, in tables of physical quantities one can find only one number fora
magnetic moment of a particle or of a nucleus instead of the set of numbers corresponding
to various matrix elements ( JM’|,,| JM). Itis possible to separate the universal geometric
information from the specific characteristics of a system under study.

Let us consider the action of the tensor operator T;, onto the initial state |a; J; M, .
As a result of the vector coupling of the angular momenta (B.37), one can obtain for the
intermediate state only the angular momentum projection M’ = M + p and the magni-
tude of angular momentum ]’ allowed by the triangle conditions J' = J + ji. The relative
amplitudes of possible intermediate states | J'M’) are given by the CGC as in (B.41),

Tl JiMi) = Y CLY v laa (T 1))’ M), (B.47)
M

Now we have to project the state | J"M’) onto the final state |a, J, M,). Because of the orthog-
onality of eigenfunctions corresponding to different eigenvalues of Hermitian operators.
only the term ' = J,, M’ = M, in the sum (B.47) survives. Moreover, the matrix element
(B.46) cannot change if the initial state, final state, and operator are undergoing a common
rotation. Therefore the result of the last projection (a, J, M| J'M’) does not depend on the
specific value of M’ = M,.

We came to the important conclusion: in any matrix element (B.46) of a tensor operator
between the states with a certain angular momentum and its projection, the entire depen-
dence on the magnetic quantum numbers M;, i and M, enters through the CGC only. The
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remaining factor does not carry any M-dependence and characterizes the physical ampli-
tude of the process, regardless of the orientation of the system. Note that all rotational
selection rules are already included in this CGC. This is the essence of the Wigner-Eckart
theorem.

Using the 3j symbol instead of the CGC, we write the result as

2 Ao

(@2 oMy Tiplar J1My) = (_)JZMZ( -M; p M

) (a2 LI T |laq J1)- (B.48)
Here the M-independent factor is introduced as a double-barred (reduced) matrix element.
The phase factor for the final state in (B.48) is in accordance with the arguments related to
time conjugation: the final state (M, = u + M;) has to be reversed to make the situation
symmetric. We see that the geometric part of information is factored into the 3j-symbol
while the intrinsic orientation-independent physics is concentrated in the reduced matrix
element. As we declared above, only one number is sufficient to describe the whole set of
matrix elements (B.46) if the rotational quantum numbers of the states and the operators
are known.

The number shown in physical tables for the expectation values of multipole operators
in a state with angular momentum J is, by convention, taken for the substate with the
maximum projection M = J. Then p = 0, and the tabular value is

Ti(a,]) = (a]]I Taola]])- (B.49)

For example, the vector (A = 1) component needed in (B.49) is V, = V,; recall (B.23).
The tabular magnetic moment therefore is the expectation value of its projection onto the
quantization axis z in the state with the maximum alignment along the z-axis.

B.2.6 Vector model

The Wigner-Eckart theorem provides us with the justification of a simple procedure used
from the very early days of atomic physics for calculating the expectation values, as for
example,

(aJM'|V|aM) (B.50)

where the initial and final states belong to the same multiplet but may differ by the
projection of the angular momentum, and V is an arbitrary vector operator.

The naive although correct way of reasoning is following. The semiclassical image of the
state | JM) is that of precession. The angular momentum vector J of the length \/J(J + 1)
has a projection M onto the quantization axis and it is precessing around this axis forming
a cone with the fixed polar angle 6, cos = M/,/J(] + 1). The transverse components Jy,
are averaged out and have zero expectation values ( J,) and ( J,) but nonzero mean square
values (J7) and (J}). The sum (J? + J7) supplements M? to the total magnitude (] + 1)
of the angular momentum squared. In this situation any vector V related to the system
can be in average aligned along the only available preferential direction, namely that of the
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angular momentum J. This proportionality of the two vectors can be written as the vector

model

(B.51)

V=v(a])]

where the coefficient of proportionality is a scalar v(a, J) which can depend on the length
of the angular momentum and on other characteristics of the state (a), and the equality
has to be understood as the equivalence of the two operators for any matrix element within
the multiplet. We find this factor by taking the projection on | in both parts of (B.51):

A\ A )}
v(a,J) = 7 0+ (B.52)

Instead of this loose derivation, we can use the Wigner-Eckart theorem (B.48). Recalling
that any vector is a tensor operator of rank 1 and introducing its spherical components V,
according to (B.7), we can write the matrix element (B.50) between the states of the same

multiplet as

, 1
(@]M'|V,,|aJM) = (=))~ ( _fw . ]{4 )<a}||vnaj>. (B.53)

Exactly in the same way, we find for the angular momentum ]

Jo1 ]

M M)<aJIIJI|a]>- (B.54)

<a_]M’U“|a]M) — (_)]—M (

Eliminating the 3j-symbol, we find that matrix elements of any vector V and of the angular
momentum J are proportional as in the vector model (B.51) with the coefficient

(a]lVla]) .
— —, B.55:

(aJIJla)) (833
It is worthwhile to stress again that the whole procedure makes sense only for the transi-
tions within the multiplet |aJM). While J acts only inside the multiplet, an arbitrary vector
V can have also off-diagonal elements in | and a matrix elements (B.50) that are unrelated

v(a,])

to the matrix elements of J.

To establish the final correspondence of (B.52) and (B.55), we calculate the expectation
values of scalar quantities J? and (J - V). The calculation is straightforward: write down
the scalar product in spherical components (B.9); express the matrix element sought as a
product of matrix elements of individual vectors with the summation over the intermediate
projection (since at least one of the vectors is J, all intermediate states have the same
quantum numbers a]); apply the Wigner-Eckart theorem (B.48) to each of the factors; and

sum over intermediate projections. The result is

SM'M

(@M1 -V)lalM) = 577

(aJll Jlia]){a]lIViia]). (B.36

Here V is an arbitrary vector operator. As it should be, the matrix elements of a scalar
quantity do not depend on the orientation (M = M,). In the particular case V = J, the

left-hand 4
the anguk

(]Il ia]
Finally, ca
(a]M"' V',

which is n¢
(B.58) does
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left-hand side of (B.56) is equal to 8ypJ (] + 1). It defines the reduced matrix element for
the angular momentum,

@/IJlla))? = J(J + 1)(2] +1). (B.57)

Finally, combining these results, we obtain
(aJ1(J - V)la])
JU+1)
which is nothing but the vector model (B.51), (B.52). Since the matrix element of (J - V) in

(B.58) does not depend on M, we do not need to indicate the projections explicitly.

(aJM'|V,.|a]M) = (aJM'|]|a]M), (B.58)




