3 The Nucleon-Nucleon Interaction

3.1 Introduction

The starting point for any dynamical description of a physical system is knowledge of
the relevant degrees of freedom and of the interaction. In the previous chapters we have
seen that nucleons are the basic components of nuclei. Their degrees of freedom are
determined by the position r;, momentum p,, spin s; and isospin r; of the ith nucleon.
For the interaction one first takes the simplest assumption that it is a two-body interaction
that can be described by a potential. A further extension of the model introduces three-
and many-body interactions for a deeper understanding of the many-body system. For
historical reasons we will first give with a phenomenological description and later the
more fundamental imeson-exchange theory.

In the following section we shall examine in what way the knowledge we already have
about the deuteron can help us find a reasonable description of the nucleon-nucleon
interaction. We should, at the beginning, consider a group of experimental facts that
indicate that the nuclear force is independent of the charge of the nucleons. This means
that the force between a neutron and a proton has the same form as the force between two
neutrons and also between two protons, if we subtract the Coulomb part. It also means that
there is a physical quantity involved for which there is a conservation law. Such a quantity
is the isospin T, defined in chapter 1. In terms of the component T. of that quantity
we can express three possibilities to build a system of two nucleons: the di-neutron with
T. = -1, the di-proton with T- = +1, and the deuteron with T. = 0. T- denotes the sum
of the Z-component of the isospin of each nucleon. Since we only have two nucleons, T
cannot be larger than 1. Therefore, for both systems. the di-neutron and di-proton. T has
to be equal to 1. For the deuteron with T. = 0. T can be 0 or 1.

The wavefunction of a system of two nucleons can be written as the product of a space
function, a spin function, and one of isospin:

W= Yo x ™7 (3.1)
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Table 3.1 Isospin wavefunction for the two-nucleon system.

Syminetry by
Isospin wavefunction T T. isospin exchange
¢ =m(1)m(2) 1 ] Triplet
(symmetric)
) = :}-_ilnu)uu) + m2p(1)l 1 0
¢, ' = v(1)v(2) 1 -1
0 = lT(1)r(2) = 7 (2)r()] 0 0 Singlet

(antisymmetric)

We denote 7 as a state of the proton and v as a state of the neutron, so that 7 (1) v(2) means
that the first nucleon is a proton and the second is a neutron. We can build the isospin
part @1 of the wavefunction of the two-nucleon system in a similar way to the case of spin,
as indicated in table 3.1.

3.2 Phenomenological Potentials

Inthe phenomenological method one uses the appropriate functional form for the potential
with a sufficient amount of parameters. The parameters are chosen so that the potential
describes as closely as possible the experimental data of the NN system. There are two
classes of such potentials: local and nonlocal potentials.

3.3 Local Potentials

The following general ansatz is made for the potential as a function of the relevant degrees
of freedom of both nucleons:

V(1.2) = Vi(r.pj.0).0;. j=12). (3.2)

Symmetry and invariance properties of the Hamiltonian operator limit the general
form of the interaction (see Appendix C). These properties are the requirement of invari-
ance through translation, rotation, Galilean transformations, and particle exchange in
connection with the Pauli principle, that is,

V(1.2) = V(2,1). (3.3)

To account for these invariance properties one introduces the relative and center-
of-mass coordinates and momenta, where the small mass difference between the neutron



Table 3.2 Tensors in two-nucleon space.

Type Operator Parity Time reversal Number
scalar 1 + & 1
scalar o, -0, + + 1
vector o) X 0) + + 3
vector o) —-0; + ” 3
vector o, +0; + - 3
tensor [o",“ x a'z”]m + + 5
Total number 16

and the proton is neglected:
r=n-—r, = : r
=n-—n, = 2( 1 +12),
1
p=s5P—-p2) P=pr+px (3.4)
The requirement of invariance under translations r — r; + a leads to the condition
Vir,p.R,P) = V(r,p.R +a,P),
and invariance under Galilean transformation p; — p; + po implies
Vir.p.R.P) = V(r.p.R. P + 2py).

Since a and py can take any values, these relations mean that V cannot depend on R
and P, so it can only possess the form

V(1.2) = V(r.p.o,.T;i j=1.2). (3.5)

Next we study the rotational invariance property. This determines the structure of the
spin degrees of freedom. Any function f (o', ;) represents a 4 x 4 matrix in the space of
two-nucleon spin that can be spanned by a linear combination of 16 matrices. These can
be classified by their tensor properties, as shown in table 3.2. The indices [1] and [2] refer
the coupling scheme of two tensor operators T."'! and T!"?' into a new operator

IL)
L Bl o Ll L
TI’M" = [T: . Tz )]] = z (L1 M LZM”LM)TIlM‘IITI'MIJlI'
M) M;
The vector operator o1 x @ in the third row of table 3.2 does not carry the similar nota-
tion, [a'l” X a'z”]“'. for the sake of simplicity. For more details on tensor operators, see

Appendix B.
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Table 3.3 Tensors build from r and p.

Type Operator Parity Time reversal
scalar r’ + -
I 2

scalar P + +

scalar rp + -

vector r - -

vector P = -

vector rxp + -

tensor [« x r'”]m - +
11 5 plti7i2!

tensor [p"" x p!'T] + +
11 pht12

tensor [r X p ] + -

When one constructs the potentials in terms of these linear combinations, one must
be sure that the result is a scalar and that the symmetries under particle exchange, parity,
and time reversal are observed. This means that one has to combine the vector and tensor
symmetry operators with the corresponding vector and tensor operators obtained from r
and p. The possible operators obtained in this way are shown in table 3.3.

Due to consideration of symmetry and invariance properties, only the following vector-
vector and tensor-tensor combinations are possible:

(a) Vector-vector: spin-orbit operator

L.-S= %(rxp)wm + a;). (3.6)

(b) Tensor-tensor:

[« x rm]lZI : ["Ilu % "Iz”]m = (g, T)o2-1) - %01 gy rl,

[p"" x pIII]IZI ) [c|]u ” n|2n]12| =(o(-p)loz-p) — %m a2 p%,

[a[,” " 0|21|]121 M x P“I]m rop. (3.7)
Instead of the last tensor operator, one uses the equivalent square of the spin-orbit operator
(L-S)%

Fron
invariai



and time reversal, is given by
V(1,2) = Ve + Vs(oy - 0,) + VoSiafr) + ViSu(p) + VisL-S + Vo(L - S)%. (3.8)
where the operator S, is given by
r r
S;):}(O‘[-;)(Ug';)—(G’l’d’z). (39)

In (3.8) the quantities V, with v € {C,S, T, T, LS; Q] are scalar functions of the
remaining scalars r?, p, and (r - p)%. Due to the relation

(r-p)? =rip? - L, (3.10)

one chooses instead the variables r?, p?, and L? as the independent ones. One must also
be sure that the total V is a Hermitian operator.

As a last point, we have to consider the isospin dependence of the interaction. The
experimental data indicate that the NN interaction is approximately independent of the
charge state of the nucleons, that is, of nn. pp, or np. In fact, the states ¢| (di-proton) and
¢;' (di-neutron) discussed in the last chapter constitute, together with ¢}, a triplet in the
isospin space. Now we want to know if some member of that triplet can be part of a bound
state of the two particles. To show that this is not possible. let us examine the ground state
of the deuteron. We saw that this statehas | = 1, S = 1,and | = 0. The last value indicates
that the space part is symmetrical and that § = 1 also corresponds to a symmetrical spin
part. As W in (3.1) should be antisymmetric, ¢77.-= should also be antisymmetric for the
ground state of the deuteron, and the isospin wavefunction of that state can only be ¢g.
The function ¢} is, therefore, the isospin wavefunction of an excited state of the deuteron.
But we know experimentally that this state is not bound. As the nuclear force does not
depend on the charge. the absence of a bound state for ¢} should be extended to ¢ and
¢7 . This last result exhibits that the bound proton-proton or neutron-neutron system does not
exist.

But, how canstates with T = 1and T = 0 correspond to different energies if the nuclear
forces are independent of the charge (isospin)? This is due to the dependence of the nuclear
force on the spin. To each group of isospin states is associated a different orientation for the
spins, so that to each group correspond different energies. The dependence of the nuclear
force on the spin has a connection with the fact that there is no state for the deuteron
other than the ground state (triplet spin). The force between the proton and the neutron
when they have antiparallel spins (singlet) is smaller than when they have parallel spins
(triplet). not strong enough to form a bound state. This force has a value just a little below
that necessary to produce a bound state.

One can formally account for isospin independence by using the commutator property
[H.T.| = 0, where T is the total isospin operator T = t; + t,. Together with the charge
conservation property | H, T,| = 0, it follows that | H, T?] = 0, that is, an invariance under
complete rotations in the isospin space. In other words, the interaction between a neutron
and a proton cannot be different from that in any coherent superposition of both. Under
these assumptions for isospin invariance, the functions V, in (3.8) must be scalars in the
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isospin space in the form
Vo = Vuo + Va1 - 72 (3.11)

Sometimes it is convenient to describe the spin and isospin dependence of the NN
interaction in terms of projection operators. We will show in the following that the terms
of (3.8) can be derived in a more physically transparent way. For example, the spin part of
the interaction can be written as

Va(r) - %(1 +0) - 03) = Vo(r)P,. (3.12)

where V, (r) describes the radial dependence and the operator P, = (1 + @, - 0,) has
the expected values +1 for the triplet state and —1 for the singlet state. This can be shown
starting from the vector S = 4(0, + o). Since §? = 71:_(0'2 + 0} + 201 - 03), then

a.-a2=%<-af~n;+4_:;); (3.13)
the eigenvalues h*S(S + 1) of 52 are +2k’ for the triplet state (S = 1) and 0 for the singlet
state. The eigenvalues of 02 = o} + 0 + o7 are equal to 3, so that the eigenvalues of
o, -0, are equal to +1 for the triplet state and —3 for the singlet state, resulting in the
expected values of P, predicted above.

P, is known as the Bartlett potential or spin exchange potential since, if we use for the
spin functions similar to those given in table 3.1, we shall obtain that the operation of spin
exchange is equivalent to multiplication by a factor 41 for the triplet state and a factor —1
for the singlet state.

If one assumes that the nuclear force depends on the parity of the wavefunction that
describes the two particles, then a way of expressing that dependence is by means of a
term of the form

Vi(r)Pr, (3.14)

referred to as the Majorana potential, which contains the operator P, that exchanges the
space coordinates of the two particles. The eigenvalues of P, are +1 and —1, if the
wavefunction is even or odd, respectively.

The isospin dependence of the interaction can also be defined by the quantity

1
Vi(r) - '2'(1 +1-t) = Vi(r) Py, (3.15)

where the operator P, changes the isospin of the two particles. The antisymmetry of the
total wavefunction implies that P, is not independent of P, and P,, embodied in the relation

P, =-P,P, (3.16)

which can be verified easily by the application of both sides to (3.1). The operator P, P, is
known as the Heisenberg operator.

Gathering the terms presented up to now, we can write the expression that represents
the central part of the nucleon-nucleon potential:

Ve(r) = V(r) + Vi(r)Pr + Va(r)Pa + Vi(r)P,, (3.17)
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The existence of tensor interactions becoimes necessary to explain certain experimen-
tal results. One of them is the absence of a well-defined value for [, represented by the
disturbance of a state | = 2 caused in the ground state | = 0 of the deuteron, (2.80). This
forces us to think in terms of a nonceuntral nucleon-nucleon interaction potential, V(r),
since a central potential V(r) conserves angular momentum and has [ as a good quantum
number. This explains the existence of the §;, term in (3.8).

It is common to describe the action of those noncentral forces by a function of the
angles between the spin vectors of the neutron and of the proton and of the radial vector
r that separates them. Such a potential is known as the tensor potential. The candidate
functions to represent the tensor polential should, as a first requirement, be a scalar.
Thus, with u, the unitary vector in the direction r, products of the type ¢ - u,, o, - u,, and
(01 x 03) - u, must be rejected as pseudoscalars, that is, they change sign under reflection
of the system of coordinates. Powers of those expressions are useless since we have, for
example, (0 - u,)> = 1aud (0 - u,)? = o - u,. In this situation, the simplest form of scalars
we are looking for is (o) - u,)(0, - u,)". This expression is usually modified to satisfy the
condition that the average value about all directions is zero. Since we know that the average
of (A-u,)(B-u,)is {A - B, we define the potential tensor as in (3.9).

For the singlet state, o, = — 0,. where it follows that (¢, -0;)= —a{= -3, and
(61 u)(0, u;) = —(0)-u,)? = —1.Thus, for the singlet state, S;, = 0, the tensor force is
zero. This is an expected result since there is no preferential direction for the singlet state.

The terms described above are all characteristic of a local potential. an expression that
denotes a potential that is perfectly defined at each paint r of the space. Potentials depen-
denton momentum are, on the other hand, examples of potentials that do not only depend
on one point and are called nonlocal. Among these. it is common to include in the nuclear
potential a term of the form V;g(r)L - S. Thus, (3.8) is not completely local, as it is linear in
p.and is known as the spin-orbit interaction. This interaction can be observed, for example,
in the scattering of polarized protons by a spinless target nucleus (figure 3.1). Depending
on which direction the proton travels, the spin S and the angular momentum L can be
parallel or antiparallel. Therefore, the term V,s(r)L - § in the potential has a scalar product
which is some times positive, other times negative. This leads to an asymmetry in the
scattering cross section.

To establish the form of the unknown functions contained in (3.8), one adopts the
approach that this potential describes correctly the experimental observations on nucleou-
nucleon scattering, or the properties of certain nuclei, as for instance the deuteron. The
values of these functions should be adjusted in such a way that they satisfy the approach
above; we shall gel a phenomenological potential. Phenomenological potentials are broadly
eniployed, uot only in the construction of nucleon-nucleon forces, but also in the inter-
action of complex nuclei, where the participation of the individual nucleons becomes
extremely difficult to describe.

Phenomenological parameterizations for the nuclear potential possess attractive and
repulsive components. At great distances they are reduced to the one-pion exchange potential

! The alternative (@) = ue)(@2 « ur) 15 nat relevant, being a linear combination of (01 - ur){ez ur)anda; o).
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Figure 3.1 Scattering of polarized protons.

(OPEP), while at small distances they possess an extremely repulsive part. That repulsive
part is usually referred to as the “hard core,” with V(r) = oo forr < r. = 0.4 fm. Some
authors use a repulsive potential that goes to infinity only for r — 0. These potentials are
known as “soft core” potentials. The most popular of these potentials is the Reid soft-core
potential [Re68]. It has the form

V= VL(;U') + V,z(ur)Su + V[_s([lr)l, -S, (318)
where
o e~ nx 20 g nx
Velx) =) _ an — Visl) = Y e — (3.19)
n=1 n=1
and
b1 1 1\ _ b 1\ =, ™
v = 2 = S x __ Lot == 0x A S s
12(%) x[(3+x+x2)‘ (x+x2)e ]+§b - (3.20)

The constants are different for all values of T, S, and L. Only a,, b, and ¢, are given
in order to reproduce the OPEP potential at great distances. For | > 2, the Reid potential
is replaced by the OPEP potential. The Reid potential is quite realistic and describes well,
within its range of validity, the properties of a system of two nucleons.

3.3.1 Nonlocal potential

The most general form of a potential, including local and nonlocal characteristics, can be
represented by an integral operation of the form

c|V|¥) = f & (e |V] ) (€' 1v) = /wv (r.2) ¥ (2).- (3.21)



This potential leads to an integro-differential Schrédinger equation. The special case of a
local potential is represented by the diagonal form

Virr)= V()i (r -r'). (3.22)
In other words, a local potential is such that the relation
[e|V|¥) = V(r)y(r) (3.23)

is valid. It means that the action of the interaction at the point r only depends on the value
of y(r) at that point. Thus, a momentum-dependent potential V(r, p) does not belong to
the family of local potentials because the dependence on p implies a dependence of the
potential on the neighborhood of r. In fact, at the end of this section we will see that
there isan equivalence between the dependence on momentum (or velocity) and nonlocal

potentials.

For V(r,r’) one can again use a few symmelry invariance conditions to fix the form of
the potential. We will not take this route here. Instead, we will describe a simpler class of
potentials called separable potentials, which can be represented by

Virr) =f*f (). (3.24)

One obtains for this class of potentials

{e[VIw)=fr) f d’r'f () v (r), (3.25)

which leads to a great simplification of the Schrédinger equation.
The main source of nonlocality of the NN interaction is the size of the nucleon: the
fact that it has an internal structure and dynamics. The relativistic effects, e.g., retardation

effects, also lead to nonlocality.
Let us calculate the matrix element of V between any states in the coordinate

representation
(¢|V]w) = /d’r'd’r" (@Ie”) V (') (r1¥). (3.26)

With the help of the transformation of the integration variables

and the Taylor expansion, represented by the translation operator, D(r), described by (A.23)
of Appendix A,
1
>(3)

(oo

one can reduce the matrix element to the form

w). (3.27)

8719)= [ dr @0 ¥ (e.p) v, (3.28)
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where

g 1 1 1
V(r.p) = /d‘p ¢ PPy (r+ %p,r— ip) e 1PP

1 1 i 1 1
~foov(esloi-o) i [on fonv(estoe-ta)] s @
fdp r+2pr 5P +2 d’p {p-p r+2pr 5P + (3.29)
with p = —iV and { | meaning the anticommutator. One alternative form is
v 1 ) 1P
V(r.p) = i/d p [V(r.r ~p) PP 4 h.c.]. (3.30)

Now let us assume the opposite situation, in which a momentum-dependent potential
V(r.p) is given. One can always bring it to the form

V(r,p) = v(r.p) + v'(r,p), (3.31)

where in v(r, p) all p-terms are on the right of the r operators. For such matrix elements
one gets

[ iepIe) = [drse-e)v (9 - 1)
_ 1 Ion - no_n 3y, k(" -r')
= oy fd rs(r—r")u(r".p )/d ke
- 1 NS 3 " ik-(r’ —r")
= (ZN)de 8 (k-7 )/d ko (e K) e
_ 1
- (2n)

/d’k v(r.k) ek, (3.32)

and consequently nonlocal potential

(r'IVir") = (2;)‘ /d‘k [v(r,k) el 4 h.c.]. (3.33)

The construction of an equivalent p-dependent potential V leads naturally back to the
original potential, as one can easily verify by using (3.30).

3.4 Meson Exchange Potentials

3.4.1 Yukawa and Van der Waals potentials

Another way to attack the nuclear force problem is to be found in analyzing the meson
exchange processes directly. The simplest exchange potential is due to the exchange of
just one pion. But, only the long distance part of the potential can be explained in that way.
Since the pion has spin zero, its wavefunction should be described by the Klein-Gordon
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equation

2.2 92
, mic 1 #1e
= d=—-———. 3.34

(V it ) c? i (3.34)
Performing a separation of variables, we obtain a time-independent wave equation when
the total energy of the pion is equal to 0 (binding energy equal to the rest mass),

(v2-uhip = 0. (3.35)
where
g % (3.36)

An acceptable solution for (3.35) is
e

p=g—. (3.37)
in which g is a constant that has the same role as the charge in the case of electrostat-
ics, where the potential that results from the interaction between two equal charges is
qV = ¢’ /r. That interaction is due to the continuous exchange of virtual photons between
the charges.

We can assunte that the potential between two nucleons is proportional to the wave-
function of the pion, that is, to the probability amplitude that the emitted pion finds itself
close to the other nucleon. We thus find the Yukawa potential

e W
V=pgl—. (3.38)

m
where we have used the factor g2, in analogy with electrostatics. The potential above decays
exponentially. and its range can be estimated by

R —=— =07fm. (3.39)

in agreement with the result obtained in section 1.2, where the uncertainty principle was
used. The force field between two protons, or two neutrons, can only be produced by the
exchange ol neutral pions. Between a proton and a neutron the exchange can be done by
means of charged pions.

It is a well-established experimental facl that the nuclear force is strongly repulsive
at very short distances and the form of the central part of the nuclear potential should
be given, schematically, as in figure 3.2. The potential well, that is, its attractive part of
medium range, can be described by the exchange of two pions. It is interesting to observe
that this part of the potential is created similatly to the Van der Waals force between two
molecules (figure 3.4).

From QCD. the fundamental theory of strong interactions, we know that nucleons
are colorless objects. that is, when they are looked upon from the outside, no net color
charge is visible. The same is true for neutral nonpolar molecules that contain equal
positive and negative electromagnetic charges distributed with no net shift, and hence no
net charge or dipole moment. However, when two molecules approach one another, the
charges become polarized and each molecule acquires a nonzero dipole moment. Then
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Figure 3.2 Sketch of the nucleon-nucleon potential. See section 3.4.3 for a fuller interpreta-
tion of the form of the potential.

theleading-order interaction energy between molecules equals V(r) = —2E(r) - d(r), where
E(r) is the average electric field felt by one of the molecules when the second one is located
at r, and d(r) is its induced dipole moment. Assuming that the induced dipole moment
d(r) depends linearly on the electric field, and knowing that the electric field created by a
dipole decreases as 1/r*, we obtain immediately that V(r) ~ —1/r®, which gives the well-
known Van der Waals potential. At intermediate and small distances, polarization effects
become stronger, and higher induced multipole moments begin to be active; however, we
can model these effects by a phenomenological term that is equal to the square of the Van
der Waals term. One thus obtains the Lennard-Jones potential,

Viy(ry =4Ep [(%)lz : (‘j)(.] ' (3.40)

r

where E, o and o are parameters fitted to data.

Figure 3.3 shows a comparison of the NN Argonne v18 potential in the 'S, channel,
with the Lennard-Jones potential between two O, molecules (E, o = 10 meV and ¢ =
0.358 nm). The Argonne v18 [WSS95] is a phenomenological potential, very successful in
describing NN scattering properties. In figure 3.3 both the v18 and the molecular potential
are drawn in the same figure with two abscissas (the lower one for O,-O,, the upper one for
the NN potential) and two ordinates (the left one for O,-O,, the right one for NN). Scales
on the abscissas were fixed so as to put the minima of potentials at the same point, and
differ by a factor of about 0.5 x 108, while scales on the ordinates differ by a factor of 10%°,

Despite the tremendous differences in scales, the two both potentials are qualitatively
very similar. Amazingly, the electromagnetic molecule-molecule potential is stiffer at the
minimum than the neutron-neutron “strong” potential. In this respect, it is fully justified
to put the word “strong” in quotation marks—this potential is not strong at alll Both
potentials exhibit a very strong repulsion at short distances—the so-called hard core (the
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Figure 3.3 The NN potential in MeV {solid curve) in the ' S channel asa function
of the NN distance in fm compared 1o the 0;-O; molecular potential in meV
(dashed curve) as a function of the distance of separation in nanometers (outer
axes).

0,-0, repulsion is stronger!). At large distances, there appears a weak attraction (the
NN attraction vanishes more slowly despite the exponential form of the OPEP potential).
Neither of the potentials is strong enough to bind the constituents into a composite object.

The analogy between the “strong” NN force and the electromagnetic molecule-molecule
force is extremely instructive. First of all, we can demystify the OPEP potential in the sense
that the exchange of real particles (pions) is, in fact, not its essential element. The OPEP
potential is a remnant of a tool (quantum field theory) that one uses to derive it, but on a
deeper level it is an effect of the color force between colot-polarized compaosite particles.
After all, nobody wants to interpret the dipole-dipole intermolecular O,-O; force by an
exchange of a "particle.” This force can be understood in terms of a more fundamental
interaction—the Coulomb force. Second, although the asymptotic large-distance leading-
order behavior of both potentials can fairly easily be derived, at intermediate and small
distances the interaction becomes very complicated. This is not a reflection of complica-
tions on the level of fundamental forces (color or electromagnetic), but a reflection of the
complicated polarization effects that take place when composite objects are put close to
one another. Moreover, these polarization effects have per se quantum character, because
the fermionic constituents do not like being put close to one another—the Pauli exclusion
principle creates additional polarization and repulsion effects. And third, it is obvious that
at small distances effects must appear that are of a three-body character. Namely, when
three O, molecules approach each other (e.g., in liquid oxygen), the basic assumption
that they polarize one another only in pairs does not hold. There are certainly polarization
effects that depend on explicit positions of all three of them. Similaily, when three nucleons
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Figure 3.4 The Coulomb force between protons and electrons in an atom can be described
in quantum elecirodynamics by lhe exchange of one photon, and the Van der Waals force
between atoms and niolecules by the exchange of more than one photon.

approach each other within the nucleus, their quark-gluon magma becomes polarized in
a fairly complicated way. which on the level of potential energy (total-interaction energy)
reveals additional terms depending on the three positions simultaneously; this gives the
three-body NNN force.

3.4.2 Field theory picture

If we stick to the quantum field theory picture in which forces are described by the exchange
of particles, the molecular binding can be described by the exchange of two photons. The
first photon, emitted by molecule 1, induces an electric dipole in molecule 2, and this dipole
emits a virtual photon that induces another electric dipole in molecule 1. The interaction
between the two dipoles gives rise to the Van der Waals force. The pions take the place
of the photons in the case of lhe nuclear forces. The production of an electric dipole is
similar to the excitation of a nucleon to a A-resonance. In this way, the nuclei are bound
by a type of Van der Waals force (higure 3.4).

A more detailed comparison between the theory of pion (or other types of mesons)
exchange and the electrostatic Coulomb field is necessary to account for the spin (and
isospin) dependence of the interaction. Since the Coulomb field is represented by a static
scalar field ¢, . a massive static pion field can be represented by a static (pseudoscalar)
isovector field ¢, . The relationships between the equations applicable to the static fields
@, and ¢, are shown in table 3.4. Following this table. the static field generated by one



Table 3.4 Comparison between the equations for the static Coulomb
and meson fields.

Photon exchange Meson exchange

Scalar field o, 0.,

Static field eq. Ay (x) = —4np,(X.11) (A —m2),(x) = —p,(x.11)

Pointcharge p,(x.,m) = qid(x—nr1) p.(x.7) = ;{%‘;r,m -V,d(x—n)
Solution b, (x, 1) = Inq—‘r.ll P, (x.1y) = xﬁtgﬂ] Vg, c_‘.l’l“';:'+|:;ll’"'£|_|

particle leads to a potential energy due to the interaction with a second particle given by

Vy(n.n) = f d*x plx.12) &, (x.11) = #”T‘”a
Valrr.ma) = /d’x Px(X.12) - &2 (X. 1)
-2 _ ~
— j” : af TR Tzﬂ‘-VIaz_vze’xp[ mq |l'| l’zll. (341)

4 m? Iry — 3]

One thus obtains in the case of the static pion field

2

] expl—myr|

Vo(r)= 4]["'”2 11120, -Vi0;- Vl——r——.
g

which is the so-called one-pion exchange potential (OPEP) with coupling constant f? /4.
This coupling has an empirical value given by f?/4r ~ 0.08. The spin operator can be
written in terms of a scalar and a tensor operator by means of

(3.42)

121 101
—— ;dl . \/g[[ol‘H " o|2||] " x am]lzl]

1
3(0’[ ~0) a’ +S|1(3)).

where
512(3)=30'1 rd0) -d — 0 -0’132

is the tensor operator (see equation 3.9). Replacing a by V one obtains finally

2 expl—m.r] 4m
Voprr = %;T: T2 [01 10 (‘r—1 = ;;5(”)
% el

' 3 3 expl—ma.r]|
+ S12(r) (1 oy m},rl) - ] (3.43)

The exchange of a pseudoscalar meson leads to a spin-dependent central potential as
well as a tensor part. As we have seen in (3.38), the exchange of a scalar meson, that is,
p(x.r) = gd(x — r), leads to a central potential with no spin dependence. A more detailed
derivation of the equations above can be found in many textbooks, for example, [BD64).
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Figure 3.5 Nuclear force due to the exchange of two pions. The A-particle
is a kind of polarized nucleon in the pion field generated by the other
nucleon.

The OPEP potential describes well the nucleon-nucleon scattering for angular momenta
| > 6. The high value of this limit shows that the OPEP potential describes the nuclear
force in a reasonable way at great distances (r > 2 fm).

3.4.3 Short range part of the NN interaction

The short range part of the nucleon-nucleon potential represented in figure 3.2 is due to
the exchange of three pions or more. The essential part of this process can be described by
the effective exchange of a resonance of three pions, known as the w-meson with spin 1
and m,,= 783.8 MeV. The w exchange is important for two properties of the nuclear force:
the repulsive part of the potential and the spin-orbit interaction.

Both properties also have analogies with the electromagnetic case. In the case of elec-
tromagnetism, the exchange of a photon also gives rise to the repulsive force between
charges of the same sign. In the case of the nuclear force, due to the large w-meson mass,
the repulsive force is of short range. Starting from this argument we can also conclude
that the strongly repulsive potential becomes a strongly attractive potential for a nucleon-
antinucleon pair at short distances.

At intermediate distances the nucleon-nucleon potential is, as we have already empha-
sized, adequately described in terms of the exchange of two pions. Another way to describe
this part of the potential is with the exchange of a single particle, the p-meson, of mass
(768.1 + 0.5) MeV/c?. It is believed that this meson is built of two pions, thus the equi-
valence with the exchange of two pions follows.

The potentials derived from the hypothesis of 7, p, and w exchange consist of com-
binations of central, tensorial, and spin-orbit parts and terms of higher order. The



radial functions that accompany these terms have a total of up to 50 parameters, which
are adjusted to the experimental data of the deuteron and to the nucleon-nucleon scat-

tering.

34.4 Chiral symmetry

A meson is a complicated solution of the QCD quark and gluon fields that involves a
real quark-antiquark pair. However, without ever being able to find this solution, we can
identify basic features of the meson that result from the underlying QCD structure.

Let us concentrate on a small piece of the QCD Lagrangian density (1.59), that is, on
the up-and-down quark components of the first term,

Ly = —y" Dyu — dy" D, d = —Gy* D,uq.

The gluon fields and the color SU(3) matrices are not essential now, so we have hidden all
that in the SU(3) covariant derivative: D, = 4, — igAj;t,. On the other hand, we have explic-
itly indicated the up-and-down quark fields, u and d, and moreover, we have combined
the fields into the quark iso-spinor,

1 3.44)
=\, ) 3.

To be specific, g contains 24 components, i.e., two quarks, each in three colors, and
each built as a four-component Dirac spinor. However, the Dirac and color structure is
again not essential, so in the present section we may think about g as a two-component
spinor. For a moment we have also disregarded the quark mass terms—we reinsert them
to some degree below.

What is essential now are the symmetry properties of £,. This piece of the Lagrangian
density looks like a scalar in the two-component field g, i.e., it is manifestly invariant
with respect to unitary mixing of up-and-down quarks. We formalize this observation by
introducing the isospin Pauli matrices, 1y, 7,, and 73, which are equal to the matrices
defined in Appendix A (A.82), and we introduce unitary mixing of up-and-down quarks in
the language of rotations in the abstract isospin space. This is exactly the same iso-space
that we know very well from chapter 1, where the upper and lower components are the
neutron and proton.

L, is also invariant with respect to multiplying the quark fields by the ys Dirac matrix
(see Appendix D). This property results immediately from the commutation properties
of the y matrices (remember that § = q"y0). So in fact we have altogether six symmetry
generators of £, , namely,

t and x = wt, (3.45)

Paf—

where the boldface denote vectors in the isospace.
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It is now easy to identify the symmetry group of £,. We introduce the left-handed t;
and right-handed t; generators,

tb=11+wpit=4t+x) and tg=1(1-p)t=1t-x). (3.46)
Since (y5)% = 1, they fulfill the following commutation relations:
[lu, tLj] = ié,‘jklu. [tRi- le] = l'f','jklgk, [lu. le] =0 (3.47)

that is, t, generates the SU(2) group, tz generates another SU(2) group, and since they
commute with one another, the complete symmetry group is SU(2) xSU(2). We call this
group chiral.

This result is in disagreement with experiment. On the one hand, particles appear in
iso-multiplets. For example, there are two nucleons, a neutron and a proton, that can be
considered as upper and lower components of an isospinor, and there are three pions, .,
7o, and 7_, that can be grouped into an isovector. So there is no doubt that there is an
isospin SU(2) symmetry in nature, but, what about the second SU(2) group? In the Lorentz
group, the ys Dirac matrix changes the parity of the field, so if y5 were really a symmetry
then particles should appear in pairs of species having opposite parities. This is not so
in our world. Nucleons have positive intrinsic parity, and their negative-parity brothers or
sisters are nowhere to be seen. Parity of pions is negative, and again, the positive-parity
mirror particles do not exist with any being nearly of the same mass.

So nature tells us that the SU(2)xSU(2) symmetry of the QCD Lagrangian must be
dynamically broken. It means that the Lagrangian has this symmetry, while the physical
solutions do not. We have already learned that these physical solutions are very compli-
cated, and we are unable to find them and check their symmetries. But we do not really
need that—experiment tells us that chiral symmetry must be broken, and hence we can
build theories that incorporate this feature on a higher level of description.

Let us now reinsert the quark-mass terms into the discussed piece of the Lagrangian:

L, =—uy"Dyu— dy" D, d — m,iiu — mydd . (3.48)

Neither of the two mass terms, nor any linear combination thereof, is invariant with
respect to the chiral group SU(2) x SU(2). For certain, had the quark masses been equal, the
two combined mass terms would have constituted an isoscalar (an invariant with respectto
the isospin group), but even then they would not be chiral scalars (invariants with respect
to the chiral group). So, the nonzero quark masses break the chiral symmetry. What the
values of these masses are needs to be taken from experiment, and indeed, the up-and-
down quark masses are neither zero nor equal to one another. The chiral symmetry is
therefore broken in two ways: explicitly, by the presence of a symmetry breaking term in
the Lagrangian, and dynamically, as discussed above. Without going into details, we just
mention that the nonzero mass of the 7-mesons results from the nonzero quark masses;
see [Wei99], chap. 19. For more quark flavors, when taken into account, the dimensionality
of the chiral group increases; for example, when three quarks u, d, and s are considered
the chiral group is SU(3)xSU(3).
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34.5 Generalized boson exchange

So far we have used a purely classical approach for the nucleon-nucleon potential. The
quantum mechanical treatment delivers the same result, if one relies on the lowest order
perturbation theory in the static case. The starting point is a system of coupled nucleon
and meson fields

H=Hy+ H? + Huy. (3.49)
whereby the free fields are described by HY and HY,. The meson-nucleon coupling H,ny
depends on the meson type. The most important are the following three types (s denotes
the nucleon feld):

(1) Scalar meson: ¢ with coupling constants g,.
Hoy = g0 g™, (3.50)

(2) Pseudoscalar mesons: ¢U). Here one distinguishes pseudoscalar (ps) and pseudovector (pv)

couplings,
H;‘:;V, - igps‘77)'5 g™, (3.51)
HM = i{%%y"wnﬂw-" (3.52)
ps

with corresponding coupling constants g, and fp.

(3) Vector mesons: ¢,‘.V'. Here also one has two possibilities, vector coupling (y*) with coupling
constant gy and tensor coupling with coupling constant fy.

HOY =gy iy vel)! - ;fiM%'“‘ v (ol — o) (3.53)
with M = nucleon mass.

In these equations, the meson field is denoted by ¢ or ¢,,. Furthermore, the mesons
carry isoscalar and isovector properties. In the latter case, the couplings ¥ - - - ¢ are to
be replaced by ¥ - - - Ty - ¢. For pseudoscalar mesons coupled to nucleons on the mass
shell, the following relation holds:

b _ &

e ) (3.54)
This relation is, however, no longer valid for off-shell situations. In particular, the antipar-
ticle contributions to the ps-coupling are large, while they are strongly suppressed for the
pv-coupling. At this point it is also important to recall that in processes for which the
chiral symmetry is of importance, the pv-coupling is preferred, since in contrast to the ps-
coupling the chiral symmetry holds for the pv-coupling.

In second order perturbation theory the Feynman diagram represented in figure 3.6 has
an amplitude given by

wlQ)F101(Q)Gm (4 — q) B2 - Q)23 - q) (3.55)

where u(p) is the Dirac spinor of a nucleons, ' is the vertex function arising from H,,y.
and G,, is the free meson propagator. The vertex function I'; and propagator G, depend
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3 ‘'
q -q
G,q-q)
o R e =
q -q

Figure 3.6 Feynman diagram for one-boson exchange.

on the meson type. For example, in the case of scalar and pseudoscalar mesons
1

TR R N ——
o -

(3.56)
For vector mesons one must also take into account the spin structure. In the above relation
q = (4o.q) is a 4 vector.

The range of the potential described by a meson exchange is given by its Compton
wavelength m~!. An overview of the related mesons is given in table 3.5. One recognizes
that the -meson describes the long range of the interaction due to its low mass, while 7,
p., and w are the responsible for the short range part of the interaction. Realistic potentials
need, however, another meson of middle range (~500 MeV), to produce the necessary
attraction at middle range (0 -meson). The existence of this meson is, however, disputed.

As an example of a realistic potential we discuss the Bonn potential given in coordi-
nate space [Mac01)]. The mesons included in this potential are shown together with their
corresponding coupling constant in table 3.6. In each spin-isospin channel the potential

Table 3.5 Mesons related to the meson exchange problem
with spin J, parity P, isospin I, G-parity G, and mass in

MeV. G-parity is a combination of charge conjugation and
a180° rotation around the 2nd axis of isospin space (see,

e.g., [Weigg]).

Meson y ig i Mass
) 0" 1= 139.57
n° 0~ 1- 134.97
n 0~ 0+ 548.8
p 1 1# 769

w 1” 0~ 769




Table 3.6 Mesons included in the Bonn potential, with their
coupling constants and the cutoff parameters A (n = 1; see
(3.58). Also used are f ,/m , =65 andf ,/m, =o0.

Meson Mass [MeV] g*/an A [GeV]
T 138.03 149 1.3
7] 548.8 2 1.5
N 769 1.2 1.2
m 782.6 25 1.4
8 983 2.742 2.0
I 550 8.77171 2.0

is written in the form
V=Vc+ VTS” + VisL-S. (357)

Vertex functions were also introduced in these potentials to account for the finite size of
the nucleons and mesons. One often chooses the simple analytical form

n’2

Y S/
r(ql)z(’:\z—_’;) (m=1.2...), (3.58)

with a suitable choice of cutoff parameters that are also shown in table 3.6. The high
momentum components are suppressed; in particular, the §-function in the scalar part of
the potential is eliminated. Other functional forms are also used, for example, Gaussian
functions. In coordinate space, the introduction of form-factor functions is viewed as
a weakening of the potential at short distances. In principle, this is a purely heuristic
procedure based on our ignorance of the interaction at short distances. [t parametrizes
this part of the interaction in the simplest way.

With regard to the role of the different mesons, the following qualitative features arise:

(a) The long range part (r > 2 fm) is described exclusively through the pion. Also, modern
phenomenological potentials account for this fact.

(b) The middle range part (I < r < 2 fm) is domninated by attraction. That is described through
two-pion exchange (TPE).

(c) The short range part is dominated by p and «w exchange. responsible for a strong repulsion.

(d) Finally. the very short range is described purely phenomenologically, either through a sharp

cutoff radius (“hard core”), or in a soft form (“soft core”).

3.4.6 Beyond boson exchange

One of the main problems of the OBE potentials is justification of the o -exchange that is
needed for description of the attraction at middle range. Within the set of physical mesons.
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Figure 3.7 Two-pion exchange diagram.

there is no meson with the demanded characteristics. Investigations have shown that the
underlying mechanism is a correlated two-pion exchange (TPE). Two methods are often
used to attack this problem,

(1) Dispersion relation method. This is based on the assumption that the TPE contribution,
shown diagrammatically in figure 3.7, can be cut in the middle and separated into two
pion lines representing two disjunct pion-nucleon off-shell scatterings. The off-shell pion-
nucleon scattering is separated into a sum of pure pion-nucleon scattering without 7=
scattering and an additional contribution with 77 scattering. This is shown schematically
in figure 3.8. The two-pion exchange amplitude is then written as a dispersion relation
integral

o i) = fx ar 22 ) (3.59)

T Ja

mi i =%

where t = (p — p')? is a Mandelstan variable. In this integral py, (t) is called the spectral
function. It characterizes both the strength and the range of the interaction and it is obtained
by the “crossing” symmetry from the process NN — 2.
One can show that with the dispersion relation (3.59) one can obtain p,, from nx and
n N scattering amplitudes [ChR79]. The contribution to the NN potential is then given by
L T () e (3.60)
r Jams

The Paris potential is constructed with this method. The explicit form is further par-
ametrized in terms of a sum of Gaussians [Lac80].

(2) Field theory approach. Here, as in the OBEP, one uses an explicit field theory model
to obtain the TPE amplitude. The lowest order diagrams are represented in figure 3.9.
Relevant for a realistic description are the couplings to resonances, most importantly
the A(1232) resonance, together with pure mxr exchange. The nucleon resonances are
herewith treated as elementary particles. One gets in this manner a detailed microscopic
description of the w exchange. In contrast to the simple OBE potentials, the correlated
nw exchange is described here in terms of realistic p and o with wide mass distribution.
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Figure 3.8 Off-shell pion-nucleon scattering separated into a pure m N part and an additional
part with 7 7 scattering [ChR79].

With regard to the meantng of 27 exchange one can raise the question how far in
higher order dtagrams one has to go and in which manner one can undertake a systematic
development. That is represented schematically in figure 3.10, where the arrows indicate
which diagrams must be considered simultaneously in order to reach convergence.

Parallel to these refincments that follow in the frame of conventional nuclear physics,
the question arises in the development of QCD as a fundamental theory of the strong
interaction as to how the NN interaction can be described in this framework. The basic
difficulty to answering this question, given that the structure of the hadrons is already
complicated by the nuclear many-body environment, lies in the so-called nonperturbative
area of QCD, dominated by the phenomenon of confinement and described by nonlinear
equations of motion.
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T 4 n 3 n
jA

| = + \;,;:‘ + + |82
n [T [ n Tm n
4 1
. K
+ ]A A:[ + ]?3‘;,::5[ +  PMAAA
—-.YE-- n (]
‘ T
n n n
e+ el ¢ Ee
[ n n T

Figure 3.9 Description of two-pion exchange in the field theory approach.
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Figure 3.10 Systematic development of the field theory approach [Mac89].

For this reason hybrid models have been developed, in which the internal hadron struc-
ture is described with effective quark models. The interaction is described in these models
in the long range part through conventional meson exchange. However, the mesons are
now coupled directly to the quarks, so the extended structure of the meson-nucleon vertices

N N N N

Figure 3.11 Quark-gluon exchange between two nucleons at small distances (left) and
effective meson exchange at larger distances (right).
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is obtained automatically by the quark wavefunctions. Only for very short distances does
the interaction become dominated by explicit quark-gluon exchange (see figure 3.11).

3.5 Effective Field Theories

As we have discussed earlier, the Argonne v18 interaction uses the OPEP potential at large
distances and the phenomenological interaction at intermediate and small distances. One
can also follow the standard approach of quantum field theory and model the second piece
by the exchange effects for heavier mesons. Larger meson masses mean shorter distances
of the interaction, so we can understand why, by adding more mesons and using the
corresponding Yukawa interactions, we can parametrize the NN force equally well.

Although this way of proceeding works very well in practice, it creates two concep-
tual problems. First, one has to include the scalar-isoscalar meson called &, which has
the quantum numbers of a pair of pions. It fulfills the role of an exchange of a pair of
pions. However, such a meson does not exist in nature as a free particle, nor is its mass
(which has to be used in the corresponding Yukawa term) close to the doubled pion mass.
The exchange of such a virtual particle simply corresponds to higher order effects in the
exchange of pions, which is a perfectly legitimate procedure, but it departs from the idea
that real, physical particles mediate the NN interaction. Second, two other heavy mesons
have to be included, the vector isovector meson p and the vector isoscalar meson . They
are physical particles. with rest masses of about 800 MeV, and the corresponding ranges
of the Yukawa potentials are very small, of the order of 0.25 fm. These small ranges allow
modeling the NN interaction at very short distances, but at these distances nucleons really
start to touch and overlap. Therefore, it is rather unphysical to think that nucleons can still
interact as unchanged objects by exchanging physical particles. Within the image of the
strong color polarization taking place at such a small distances, one would rather think that
the internal quark-gluon structure of nucleons becomes strongly affected, which creates
strong repulsion effects, predominantly through the Pauli blocking of overlapping quark
states.

At present, we are probably not at all able to tell what happens with the nucleons when
they are so near to one another. However, we do not really need such complete knowledge
when describing low energy NN scattering and structure of nuclei. All we need is some
kind of parametrization of the short range, high energy effects when we look at their
influence on the long range, low energy observables. Such separation of scales is at the
heart of effective field theory (EFT).

One can apply similar ideas to almost all physical systems, where our knowledge of the
detailed structure is neither possible nor useful. The simplest example is the effect of the
electromagnetic charge and current distributions inside a small object, when we shine
at it an electromagnetic wave of a much longer length (the long wave length limit). It is
well known that all we need are a few numbers—low multiplicity electric and magnetic
moments. Of course, the best would be to be able to calculate these moments from the exact
charge and current distributions, but once we know these numbers, we know everything.
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On the other hand, if the internal structure is not known, we can fit these numbers to
the measured long wave scattering and thus obtain the complete information needed to
describe such a scattering process.

Examples of other such situations are plenty in physics. Interested students are invited
to go through the very good introductory lecture notes by Lepage [Lep97], where nice
instructive examples are presented in the framework of ordinary quantum mechanics. In
particular, it is shown how a short range perturbation of the ordinary Coulomb potential
influences the hydrogen atomic wavefunctions, and how such a perturbation (no matter
what its physical origin) can be parametrized by a zero range, delta-like potential.

3.6 Exercises

1. Suppose that the interaction potential between the neutron and the proton is exponential,
of the form V = Vge~"/? where V; and r, are, respectively, the depth and the range of the
nuclear potential. a) Write the Schrédinger equation (in the center of mass system) for the
ground state of the deuteron of angular momentum / = 0. b) Use the definition x = ¢~/
and ¥ (r) = u(r)/r. Show that the Schrédinger equation has a Bessel function as a solution.
Write the general solution of this equation. c) Applying the boundary conditions (¥ finite
forr = 0 and r = 00), determine the relationship between V; and r,.

2. For a system of two nucleons show that L + S + T should be odd, where L, S, and T are,
respectively, the quantum numbers of orbital momentum, spin, and isospin of the system.

3. The deuteron has spin 1. What are the possible states of total spin and of total angular
momentum of two deuterons in a state with orbital angular momentum L?

4. A particle with spin 1 moves in a central potential of the form
V(r) = Via(r) + S - LVy(r) + (S - L) V;(r).

What are the values of V(r) in the states with j =L+ 1,L,and L —1?

5. Suppose that the meson 7~ (spin 0 and negative parity) is captured from the orbit P in
a pionic atom, giving rise to the reaction

7 +d— 2n.

Show that the two neutrons should be in a singlet state.

6. Consider the operator S;, defined in (3.9). Show that, for the spin singlet and triplet state
of the two particles, the following relations are valid:

Stz Xsiingter = 0, (512 = 2)(S12 + 4) Xuripter = 0.
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). Lets, and s, be the spin operators of two particles and r the radius vector that connects
them. Show that any positive integer power of the operators

5 - S2 and _“_(il._?l_(iz__f.) == (s‘ . sZ)

can be written as a linear combination of these operators and the unit matrix.

8. Prove the relations
S XS “Z—is -82)8 —"—-'S
|~z—h(1 2)$1 5 Sz

(s1 % 1) - (83 x 1) = R(sy - 82) — (51 - 1)(S2 - 7).

9. Show that the tensorial force S,; has a zero angular average; that is, show that
[$12d92 = 0.

10. Find the functional form in coordinate space of a potential expressed in momentumn
space by equation (3.58).

1. Consider, in addition to nuclear np forces, the interaction of the neutron magnetic
moment with the Coulomb field of the proton.

(3) Show that, for nonrelativistic relative np motion, this interaction leads to a new Hamiltonian

term with the structure
H' = V(r)(I - sn). (3.61)

where | and s, are the operators of the relative orbital momentum and of the neutron spin,
respectively. Find the coordinate dependence of V(r).

(b) Find the constants of motion in the np system in the presence of the additional interaction
(3.61).

(c) Construct the matrix of interaction (3.61) in the basis of the unperturbed n-p wavefunctions
with given values of /, total spin S, and total angular momentum J. Estimate the shift of the
deuteron binding energy due to this interaction.

(d) Write down the Schrédinger equations for the radial wave functions outside the range of

nuclear forces. Are there any new effects expected in the np scattering?



