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We explore the preparation of specific nuclear states on gate-based quantum hardware using variational
algorithms. Large-scale classical diagonalizations of the nuclear shell model have reached sizes of 109–1010 basis
states but are still severely limited by computational resources. Quantum computing can, in principle, solve such
systems exactly with exponentially fewer resources than classical computing. Exact solutions for large systems
require many qubits and large gate depth, but variational approaches can effectively limit the required gate depth.
We use the unitary coupled cluster approach to construct approximations of the ground-state vectors, later to be
used in dynamics calculations. The testing ground is the phenomenological shell model space, which allows us
to mimic the complexity of the internucleon interactions. We find that often one needs to minimize over a large
number of parameters, using a large number of entanglements that makes the application on existing hardware
challenging. Prospects for rapid improvements with more capable hardware are, however, very encouraging.
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I. INTRODUCTION

Quantum computing holds the promise of exact solutions
for specific quantum states and dynamics [1–3], which in nu-
clear systems [4] would revolutionize our ability to understand
and use nuclei as probes of fundamental physics, to cre-
ate medical isotopes, and to diagnose complex astrophysical
and terrestrial environments. While this ultimate goal awaits
the development of quantum hardware with more qubits and
smaller error rates, we can begin to examine potential near-
term algorithms on quantum hardware which help us move
toward these ultimate goals. One clear important area of in-
vestigation is variational approaches for preparing specific
quantum states.

In this paper, we first examine required quantum resources
in number of qubits and circuit depths for quantum prob-
lems. We then comment on various approaches to solving
the nuclear many-body problem in the shell model, tradition-
ally formulated in terms of harmonic oscillator single-particle
states, and lattice approaches. In the more standard gate-
based quantum hardware, the number of qubits required is
largely determined by the single-particle space considered.
The circuit depth for exact solutions is largely determined by
spectral properties of the nuclear Hamiltonian. It is here that
variational approaches are helpful in that they can produce an
accurate, though approximate, initial state that can be made
exact with dynamical quantum algorithms and/or used in
calculations of nuclear transition rates, response, and more
general scattering processes.

The bulk of the paper is devoted to the use of the unitary
coupled cluster approach to construct approximations of the
ground-state vectors. The testing ground is the phenomeno-
logical shell model space, which allows us to mimic the
complexity of the internucleon interactions. We find that it

is important to optimize a large number of variational pa-
rameters in this approach, which is challenging on current
hardware. Improved quantum hardware will lead to rapid ad-
vances in the size of problems that can be handled, however.
In addition, recent algorithmic improvements in variational
quantum eigensolver (VQE) algorithms may further reduce
the required gate depth [5].

II. THEORETICAL FRAMEWORK

The nuclear many-body problem is very similar to other
strongly correlated quantum many-body problems includ-
ing many-electron systems in atomic and molecular physics,
properties of bulk hydrogen and helium in the cores of gaseous
planets, and cold atom and molecular systems including uni-
tary fermions. Though nuclei are strongly correlated, they do
have a substantial mean field which governs many low-energy
properties including binding energies, radii, and electromag-
netic transition rates. These properties have traditionally been
explored in the nuclear shell model through large-basis di-
agonalizations with phenomenological two- and sometimes
three-nucleon interactions. In such calculations, the single-
particle states are typically treated as solutions of a harmonic
oscillator to enable a clean separation between relative and
center-of-mass coordinates. While the single-particle model
spaces are typically rather constrained, of order of tens to
hundreds of states, the total dimensionality of the many-body
problem grows extremely rapidly with particle number. Even
with restrictions upon total oscillator energy in the many-body
states, the full dimensionality of the problem can easily ex-
ceed the capacity of the largest classical computers.

For quantum many-body problems, it is natural to con-
sider the standard Jordan-Wigner (JW) [6] or Bravi-Kitayev
(BK) [7] encodings of the quantum many-body problem.
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Though the interaction is more complicated than, for example,
Coulomb interactions in atomic and molecular systems, it is
2-local (or 3-local with three-body interactions), making the
encoding relatively efficient. A fault-tolerant quantum com-
puter with 50–100 qubits could easily exceed the capabilities
of present-day classical computers. In addition to ground-state
properties, quantum computers can be used to calculate dy-
namical properties including response functions and hadronic
scattering.

Treating “realistic” nucleon-nucleon interactions fit to
nucleon-nucleon scattering data is more difficult. In this case,
the single-particle basis has to be much larger. For example, a
cubic lattice with a total length L in each dimension of 10 fm
and a 1-fm lattice spacing would require 1000 qubits with
BK encodings. For small particle numbers, first-quantized
approaches to the encoding, where the number of qubits scale
logarithmically with the number of basis states, would be
more efficient.

Beyond just the number of qubits, the circuit depth is
very important for near-term applications. Here variational
approaches can be important in reducing the circuit depth, and
producing accurate approximate solutions in relatively few
gates appears feasible in typical shell-model applications, as
we discuss below.

A. Model space and interactions

In general, nucleons interact via two- and higher body
interactions, with the dominant contribution coming from
two-nucleon interactions. Hence, in this paper, we limit our-
selves to two-body interactions. In addition, in order to be able
to run some of our simulations on quantum hardware, we have
decided to restrict ourselves to rather small model spaces,
where we can still use some “realistic” two-body interactions.
For this reason, we have adopted the phenomenological shell
model interactions derived at a time when the computational
power was severely limited. In this model, one assumes that
only a few (valence) nucleons interact, while the interaction
with the inert (core) nucleons is approximated via a diagonal
one-body term (single-particle energies). Thus, the Hamilto-
nian for such a model writes

H =
∑

i=1,Ns

εia
†
i ai + 1

2

∑
i j,kl

Vi j,kl a
†
i a†

j al ak, (1)

where Ns is the number of states in the model, a†
i , ai are the

creation and annihilation operators for state i, and εi and Vi jkl

are the single particles and two-body matrix elements that
are fitted to reproduce energy spectra for a limited number of
nuclei. However, the method presented here should be general
enough to be applied in other approaches, for example, the
no-core shell model. Thus, this nontrivial problem has the
advantage that while it is defined in a small model space (i.e.,
requires a relatively small number of qubits), it has a similar
complexity to the more realistic internucleon interactions. In
the present investigation, we use the Cohen-Kurath interaction
[8] in the p-shell model space, which includes six states for
protons and six for neutrons and assumes a inert 4He core,
and the “universal sd” Wildental interaction [9,10] in the sd
model space, with 12 states available for protons and 12 for

neutrons and a 16O inert core. In most of the calculations, we
only include neutrons in order to keep the required number
of qubits small enough for simulations. We consider only one
case in which we treat two protons and two neutrons in the 0p
shell.

In this paper, we use unitary coupled cluster ansatz to
construct a correlated state. We start from a Hartree-Fock
(HF) solution, which determines the occupied and unoccupied
states, and construct two-particle, two-hole, and higher corre-
lations as discussed in Sec. II B. We use the code SHERPA
to compute the mean-field solution in this basis [11]. Be-
cause the rotational invariance is, in general, broken in such
an approach, usual constrains like fixing the total angular
momentum projection when constructing basis states can no
longer be imposed. This in turn produces an increased number
of configurations that are required to obtain a correlated state.
In the case where the HF solution is spherical, we can signif-
icantly limit the number of configurations that we include in
the simulations, without affecting the quality of the solution,
by allowing only two-particle, two-hole configurations that
have zero total projection of the angular momentum on the
z axis. Note that while SHERPA can handle an odd number of
protons and neutrons, we restrict our investigations to even-
even systems.

A consequence of using the HF solution is that the in-
teraction in Eq. (1) will have to be transformed to the HF
basis, where the creation and annihilation operators describe
deformed single-particle states. In general, this increases the
number of terms in the interaction and is particle number
dependent, just like the mean field.

B. The unitary coupled cluster ansatz

Probably the most widely used approach to generating a
correlated ground-state solution from the HF state, also suit-
able for implementation on quantum hardware, is the unitary
couple cluster (UCC) method. Formally, this reduces using an
anti-Hermitian unitary transformation U (�θ ) so that the trial
state

|�(�θ )〉 = exp
(
U (�θ )

)|�0〉 (2)

minimizes the energy by adjusting the parameters �θ . In
Eq. (2), |�0〉 stands for the HF solution. In UCC, the anti-
Hermitian operator U (�θ ) is assumed to have a simple one- or
more particle-hole configuration form,

U (�θ ) =
∑
i,m

θim(a†
i am − a†

mai )

+
∑

i< j;m<n

θi j;mn(a†
i a†

j anam − a†
ma†

na jai ) + · · · , (3)

where the sums run over occupied (i, j) and unoccupied (m, n)
states. In many applications, restriction to two-particle, two-
hole configurations gives very good approximations to the
exact solution, but there are cases where higher order terms
have to be considered to improve the quality of the solution.

In addition to the truncation to a tractable number of con-
figurations, the Trotter approximation is often invoked as an
additional source of errors because the implementation of
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the exponential of the sum of operators is nontrivial. While
in some cases improving the Trotter approximation helped
[12], for the many-body systems considered in this paper,
the impact of such an improvement was negligible. Note
that because the terms corresponding to each parameter θ in
Eq. (3) conserves the number of particles, the Trotter approxi-
mation does not introduce errors that would break the particle
number.

C. Elementary operator mappings

There are two types of mappings that allow simulations of
physical systems on quantum hardware. The most straightfor-
ward approach is the second quantization mapping, in which
every fermionic state is associated with a distinguishable
qubit. In such approaches, the creation and annihilation opera-
tors for fermionic states are written in terms of Pauli operators
acting on different qubits. For example, in the Jordan-Wigner
(JW) approach, the creation and annihilation operators asso-
ciated with state i are mathematically formulated as [6]

a†
i = 1

2

(
i−1∏
j=0

−Zj

)
(Xi − iYi ), (4)

ai = 1

2

(
i−1∏
j=0

−Zj

)
(Xi + iYi ). (5)

Here the Xq, Yq, and Zq are the Pauli matrices acting on qubit q.
Hence, all many-body operators, including the Hamiltonian,
can be mapped into sets of Pauli operators acting on different
qubits. The occupation number in the JW mapping is stored in
the |0〉 and |1〉 state of the qubit, corresponding to unoccupied
and occupied states respectively. While simple, this method
has the disadvantage that in order to represent state i one
must include i − 1 operators acting on the previous qubits.
For an early application of this method in nuclear physics, see
Ref. [4].

An alternative to the JW mapping is the parity represen-
tation, in which the qth qubit stores the sum of the parity of
the the first q modes [13,14]. This mapping has not yet been
proven very useful in applications to quantum chemistry [14].

The Bravyi-Kitaev (BK) mapping [7] has been proved to be
as efficient, and in many cases considerably more efficient, in
quantum chemistry calculations of ground states of molecular
systems [15,16]. In this approach, the qubits store partial sums
of occupation numbers but require the number of states to be
powers of 2. However, an operator that has a weight O(M ) in
the Jordan-Wigner encoding would only have O(log2(M )) in
the BK mapping.

The second quantization mappings, like those briefly de-
scribed above, have the disadvantage that the number of qubits
scales with the number of single-particle states, which grows
very fast in realistic nuclear physics problems. In a first
quantization approach, a better scaling can be achieved, at a
cost: The antisymmetrization, which naturally enters in the
JW mapping, must be implemented explicitly for a relatively
large number of particles [17]. However, in the long run, with
efficient antisymmetrization methods, this mapping would be
better suited for future applications as it has better scaling than

JW or BK mappings [14], especially in applications where the
problem is discretized on large lattices.

The shell model Hamiltonian is naturally given in second
quantization like in Eq. (1), and hence JW [6] or BK [7]
mappings of the states into qubits are an excellent match for
a relatively straight-forward implementation. We have imple-
mented both mappings and also considered a first quantization
encoding, but for this paper we have performed most of the
calculations using the JW mapping, which is more straight-
forward to understand. In particular, in our implementation of
the first quantization approach, the Hamiltonian was mapped
into considerably more Pauli terms, in addition to the chal-
lenges posed by the antisymmetrization of a large number of
particles. The challenge posed by antisymmetrization can be
circumvented using a recently developed quantum algorithm
[18] that antisymmetrizes η particles over N single-particle
basis function with a gate complexity of O(logc η log2 log2 N )
and a circuit size of O(η logc η log2 N ). The value of c depends
on the choice of the specific algorithm.

While the scope of the paper is to investigate the UCC
method for the nuclear shell model, we find instructive to
compare the resources required in other methods to construct
the ground state. A series of nonvariational approaches has
been proposed that make use of quantum phase estimation
[19] and its improvements [20–23]. The best known algorithm
to prepare the ground state has a gate depth that scales as
(corollary 9 of Ref. [22])

O
(

1

γ�

[
log2

α

�
log2

1

γ
log2

log2 α/�

P
+ log2

1

ε

])
, (6)

where � is the spectral gap, γ is the lower bound of the
overlap of the trial state with the ground state, α is a parameter
related to the block encoding of the Hamiltonian considered
and its definition is reported in Eq. (1) of Ref. [22], P refers
to the probability of preparing the desired state, and ε is the
fidelity of the prepared state relative to the ground state. We
notice that for cases in which � and/or γ are small the gate
depth becomes large, making the approach unfeasible. Addi-
tionally, unitary evolution on quantum computers producing
the equivalent of Lanczos, or imaginary-time algotithms sim-
ilar to quantum Monte Carlo have been introduced [24,25].
Similar to quantum phase estimation, these algorithms also
produce exact answers in principle but require a larger number
of gates and higher fidelity. For current generation computers,
the use of variational algorithms is preferred [26], and may be
very valuable even in the future to prepare accurate starting
points for more exact methods.

To better understand the complexity of the quantum gate
implementation in a real problem, we report in Fig. 1 the
circuit depth (number of gates for preparing the ansatz) as a
function of the number of proton or neutron single-particle
states for 16O in the no-core shell model. In this approach,
one includes all harmonic oscillator single particle states up to
a maximum nmax. In addition, one also allows only up to Nmax

particle-hole excitations on top of the minimum 0h̄ω configu-
ration. This cutoff not only reduces the number of many-body
configurations but also exactly decouples the center of mass
motion. For 16O, the largest calculation to date was reported
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FIG. 1. Gate depth as a function of the number of proton or
neutron single-particle states for 16O for two different gate scenarios,
in JW mapping. See text for details.

for Nmax = 8, including 10 oscillator shells (nmax = 9), or 440
single-particle states for each protons and neutrons. As we can
see, the parallelization schemes such as fermionic swap can
reduce the number of layers needed by some order of magni-
tude. The current gate depth remains, however, unfeasible for
the expected first-generation fault-tolerant quantum comput-
ers. We analyze now the scaling of the UCC(S)D, i.e., UCC
with (singles and) doubles, ansatz. Our discussion follows the
one reported in Ref. [27], adjusted for the problem at hand.
For the case of a first-order Trotterized UCCD ansatz, the total
number of parameters (equivalent to the number of doubles) is

Nparam. = NpNn(N − Np)(N − Nn)

+
(

N − Np

2

)(
Np

2

)
+

(
N − Nn

2

)(
Nn

2

)
, (7)

with Np and Nn as the number of protons and neutrons, respec-
tively, and N as the number of single-particle states included
in the calculation (taken, for simplicity, equal for both protons
and neutrons as usual in the no-core shell model). We consider
the case for which N � Nn,p that leads to a number of parame-
ters that scales as O(N2(Np + Nn)2). It is convenient to denote
with f the gate depth of a single term associated of the UCCD
ansatz [obtained from mapping individual terms in Eq. (3)],
and therefore the scaling of the gate depth is O(N2(Np +
Nn)2 f ). In the worst case scenario, for the case of Jordan-
Wigner and Bravyi-Kitaev transformations, we have, respec-
tively, f ∈ O(N ) and f ∈ O(log2(N )). These depths are for
serial executions and recent work in quantum chemistry has
made progress using the parallelization techniques [28]. A
significant reduction in the gate depth can be obtained using a
fermion swap network, as discussed in Ref. [29].

In order to implement the UCCD ansatz discussed in
Sec. II B, a relatively simple circuit can be constructed to
include two-particle two-hole configurations on top of the
HF solution for two particles (e.g., neutrons) in the p shell,
as shown in Fig. 2 for all three mappings discussed above.

(See the Appendix for a more detailed discussion about the
circuit constructed in the JW mapping.) In this case only
the two-particle, two-hole configurations promoting particles
from states 0,1 to 2,3 and 4,5 respectively have significant
contributions, as such states preserve the time-reversal invari-
ance. Similar constraints can be enforced in other systems
and can be extended to other symmetries. Thus, the simpli-
fied circuit marked by dashed lines in Fig. 2 produces only
the two-particle, two-hole configurations relevant for the case
when we consider only two neutrons in the p shell (6He).
Furthermore, even though the circuit in the BK mapping
has already the lowest gate depth, it can be further reduced
by removing q1, q3, and q5, and analytically computing all
expectation values on these qubits. The number of terms in
the Hamiltonian mapping is reduced from more than 170 to
13. In Sec. III, we use this reduced circuit to minimize the
energy. It is not likely that such a reduction will be possible for
more complicated configurations, but in some particular cases
one could possibly make some calculations more efficient by
performing similar removal of select qubits. Calculation of the
expectation value of each of the Hamiltonian terms requires
an additional measurement circuit, which can be built using
well-known identities of Pauli matrices [30].

In a more general case, for more particles or where the
number of two-particle, two-hole configurations that are im-
portant is large, the complexity of the circuit increases rapidly.
The circuits represented in Fig. 2 are not universal, and it
can only be applied to two particles and only because we did
not include additional excitations (e.g., promoting particles
from states from 0,1 to 2,4 on top of the correlations included
already in the circuits).

For more general circuits that can handle a larger num-
ber of particles and excitations, we have used the work in
Refs. [31,32] to implement particle-conserving one- and two-
body correlations. Because we have included four particles
and four holes in a very limited number of tests, we have used
a less efficient circuit for testing purposes only. It consists of
a “brute force” approach, in which we expand the set of four
creation and four annihilation operators in Pauli strings and
take the exponential of each Pauli product, as they commute,
similar to Eqs. (A6) and (A7) in Ref. [33] extended to higher
particle-hole correlations. This results in a large number of
CNOT entanglements that are out of reach for the hardware
available today.

D. Entanglement

One of the main questions is how entangled are the states
that need to be prepared, as the complexity of the circuits
required to produce such states depends on this entanglement.
It is difficult a priori to estimate the degree of entanglement.
However, because the systems that we consider in this paper
have a numerical solution, we can investigate this question in
the context of entanglement entropy and mutual information.

The density matrix for a prepared state |�〉 (in this case
ground state) is written as

ρ = |�〉〈�|. (8)
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Second quantization: Jordan-Wigner mapping
q0 :

q1 : X • •
q2 : Ry(−θ0123) • •
q3 :

q4 : Ry(−θ0145) Ry(θ0145) • • •
q5 :

c : /6

Second quantization: Bravyi-Kitaev mapping
q0 : X •
q1 :

q2 : X Ry(π − θ0123/2) •
q3 :

q4 : Ry(−θ0145 + π/2) Ry(θ0145 − π/2) •
q5 :

c : /6

First quantization mapping
q0 : X

q1 : Rx(−θ0123) • • •
q2 : Ry(−θ0145) Ry(−θ0145) • • •
q3 : X H •
q4 : S

q5 :

c : /6

FIG. 2. Circuits for including a limited number of two-particle, two-hole configurations on top of the HF solution for two particles in six
states, with Ry(θ ) = exp(iθY/2). All three mappings are shown in this figure: Jordan-Wigner (upper panel), Bravyi-Kitaev (middle panel),
and first quantization (lower panel). These circuits can be extended to more single-particle states and select extra two-particle, two-hole
configurations. When θ0123 = θ0145 = 0, the Hartree-Fock state is recovered. The circuit included in the dashed box produces only a mixture
of the HF state with an excited state obtained by promoting particles from the lowest two single-particle states into the next two higher
single-particle states. The reduced circuit will be used on available hardware to evaluate the energy as a function of θ0123 in Sec. III.

As discussed in many references before us [34–37], one
can always consider a partitioning of the basis states in two
subsystems and trace the density matrix in Eq. (8) over one
of the subsystems, obtaining a reduced density matrix. The
reduced density matrix can be diagonalized, with eigenvalues
ρi, where i runs from 1 to 2ns , with ns being the number
of single-particle states not included in the trace. The von
Neuman entropy is calculated as

S = −
∑

i

ρi ln ρi. (9)

This entanglement entropy has two extremes: 0, when the
subsystems are decoupled, and ns ln(2), when the subsystems
are maximally entangled.

In the following, we consider the entanglement of each HF
state, so that ns = 1, and in order to construct the reduced
density matrix, we will trace over N − 1 states. Furthermore,
we define like in quantum chemistry and nuclear physics
studies [37,38] the mutual information between two states α,
β as

Iαβ = 1
2 (Sα + Sβ − Sαβ )(1 − δαβ ), (10)

which is a quantitative measurement of the correlations be-
tween the two orbitals. This quantity is zero if there two
orbitals are not entangled. In Fig. 3, we plot the entanglement
entropy of the HF single-particle (s.p.) states and the mutual
interaction among all (proton and neutron) HF s.p. states, for a
calculation of 8B in the p shell. The s.p. entanglement entropy
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FIG. 3. Left panel: the s.p. entanglement entropy (red bars) compared against the maximal entanglement value (dashed blue line). Right
panel: the mutual information for the HF s.p. states. In both cases, we have used the s.p. HF states of 8Be in the p shell. States 1 through 6 are
for neutrons and 7 through 12 are for protons.

is almost maximal, a consequence of the high correlations in
the small model space considered here. All quantities were
extracted from the exact calculations, using the exact solution
obtained by diagonalizing a matrix with dimension 225. It
can be seen immediately that the entanglement between dif-
ferent proton and neutron orbitals is quite strong, particularly
between the lowest proton and neutron states, presumably
because the model space is so restricted. In phenomenologi-
cal approaches like the shell model, one treats mostly states
around the Fermi surface, which are expected to be highly
correlated. It is, however, very difficult to relate the informa-
tion about the entanglement entropy to the complexity of the
circuit required to prepare the ground-state eigenvector.

III. RESULTS

We have implemented the parametrized quantum circuits
reported in Fig. 2 on the available simulators and, in some
cases, on current quantum hardware. The classical minimiza-
tion procedure that enters in VQE has been carried out using
different versions of gradient descent, currently implemented
in the method minimize() from the scipy module.

A. Simulator results

The simplest problem we can run on six qubits is two
neutrons in the p shell, which corresponds to 6He. As noted
in the previous section, we obtain a very good approximation

of the ground-state energy if we consider only two parameters,
as shown in Table I. This is not necessarily surprising, since in
a shell-model implementation there are only three states with
the total projection of Jz summing up to zero.

We have extended the calculations to other nuclei as well,
8Be (two protons and two neutrons in the p shell) and 20,22O
(four and six neutrons respectively in the sd shell), with all the
results summarized in Table I. For the 8Be system, we show
the results when we include only two-particle, two-hole con-
figurations for the same type of particles (protons or neutrons),
adding two-particle, two-hole configurations that include pro-
ton and neutron excitations at the same time (marked by an
asterisk), and two protons and two neutrons (marked by two
asterisks), that is, four particles, four holes. To understand
why on top of two-particle, two-hole excitations we also need
to add the four-particle, four-hole configuration, we list in
Table II the amplitudes of each configuration that has its
absolute value greater than 0.1 in the exact calculation. Includ-
ing two-particle, two-hole configurations built by excited one
neutron and one neutron above the Fermi level already sig-
nificantly improves the quality of the state. This was already
hinted in Fig. 3, where some of the most correlated orbitals
are constructed from neutron and proton states. Including two-
particle, two-hole operators in the anzatz (3) induces higher
particle-hole correlations, including four-particle, four-hole
configuration. However, if the sum in Eq. (3) is truncated to
only two-particle, two-hole contributions, one can see imme-

TABLE I. Summary of the results for the ground-state energy for different systems in different model spaces. The approximate EUCC energy
is obtained by minimizing the Hamiltonian using ansatz in Eq. (2) for select particle-hole configurations (2p-2h, 2p-2h+4p-4h) in Eq. (3).

Nucleus Model Space Eexact (MeV) EHF (MeV) EUCC (MeV) Number parameters

6He p −3.91 −0.90 −3.85 2
8Be p −31.12 −26.12 −26.79 12
8Be∗ p −31.12 −26.12 −29.37 76
8Be∗∗ p −31.12 −26.12 −30.67 112
20O sd −23.93 −21.29 −23.18 10
22O sd −35.27 −32.98 −35.14 35
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TABLE II. Configurations with the absolute value of the amplitude over 0.1 in the exact solutions, compared with approximations of the
ground state when two-particle, two-hole (2p-2h) and four-particle, four-hole (4p-4h) configurations are introduced on top of the HF solution.
The first six digits give the occupation of the neutrons on six states, and the next six, the proton occupation. The 000011000011 configuration
stands for the HF state.

Configuration Exact 2p-2h 4p-4h

000011000011 +0.452 +0.760 +0.516
000011001100 −0.201 −0.236 −0.205
000011110000 +0.154 +0.189 +0.157
000101000101 −0.101 −0.120 −0.104
001010001010 −0.101 −0.120 −0.104
001100000011 −0.201 −0.236 −0.205
001100001100 +0.393 +0.102 +0.386
001100110000 −0.274 −0.068 −0.253
010100101000 −0.146 −0.017 −0.135
011000101000 −0.119 −0.020 −0.110
100100010100 −0.119 −0.020 −0.110
101000010100 +0.146 +0.017 +0.135
110000000011 −0.154 −0.189 −0.157
110000001100 +0.270 +0.067 +0.253
110000110000 −0.239 −0.043 −0.215

diately in Table II that some of the significant four-particle,
four-hole configurations have a much smaller amplitude than
what would be required. Explicitly adding four-particle, four-
hole configurations significantly improves the quality of the
solution, as illustrated in Tables I and II.

B. Noisy simulators and hardware results

We report in this section results for calculations on noisy
simulators and actual hardware. The original Hamiltonian in
the JW mapping has been collapsed to contain only Pauli
operators acting on qubits 0 through 3, by taking the analyt-
ical expectation value on qubits 4 and 5, which will remain
unoccupied. Hence, the reduced Hamiltonian has 18 terms
and the circuits in the variational ansatz depend on only one
parameter; see the boxed gates in Fig. 2 or equivalently Fig. 4.
We implemented this problem in Qiskit [39] and ran it on
the IBM quantum device Bogota [40]. A plot of the energy
as a function of the variational parameter θ0123 is reported in
Fig. 5. We notice that each evaluation of the energy has been
error mitigated by performing first readout error mitigation
using the module included in IBM’s Qiskit-Ignis [39] and then

q0 :

q1 : X •
q2 : Ry(θ0123) • •
q3 :

c : /4

FIG. 4. Circuit used to include only the lowest two-particle, two-
hole configurations on top of the HF solution for 6He in the JW
mapping. A gate identity was used to adapt the circuit inside the
dashed box in Fig. 2 to the connectivity of the Bogota machine.

mitigated for the noise caused by the CNOT gates. During this
last error mitigation procedure for each function evaluation,
we added 2k CNOT gates for each CNOT gate with k = 1, 2, 3
and we extrapolated the results to zero noise using Richardson
extrapolation as described in Ref. [41]. We notice that given
the fact that we are using very shallow circuits (with a maxi-
mum number of 3 CNOT gates) we did not use other methods
such as exponential extrapolation, a method that was shown to
lead to a significant improvement for observables calculated
using significantly higher gate depths [42] than the present
ones. The error-mitigated results are more in agreement
with the numerically exact ones, although not in complete

FIG. 5. Energy as a function of the angle in the variational ansatz
used. We present here the exact and hardware results using the
five-qubit IBM machine Bogota. The red squares show the hardware
unmitigated results, while the green circles show our results after
readout error mitigation and Richardson extrapolation.
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TABLE III. Error metric for the one dimensional problem.

Type χ 2 nssd

Bare 2,650 3.6
Mitigated 331 4.3

agreement. In order to asses the quality of the results, we use
the error metric defined in Eq. (33) of Ref. [41] and reported
below for completeness,

χ2 =
M∑

k=1

(
v

(e)
k − v

(t )
k )2

)2

(
ε

(e)
k

)2 , (11)

nssd(r) =
√√√√∑M

k=1

(
v

(e)
k − v

(t )
k

)2

∑M
k=1

(
rv(t )

k

)2 , (12)

where M denotes the number of points used in the angle
(θ0123) grid, v

(t )
k is the exact theoretical result at point k, and

v
(e)
k and ε

(e)
k are the experimental value and the estimated

error respectively. In the following, we use r = 0.05. We
recall that χ2 quantifies the compatibility of the data with the
exact results and nssd the accuracy of the calculation. The
values of both error metrics are reported in Table III. The
error-mitigation protocol used substantially reduces χ2. On
the other hand, this process leads to a undesirable increase in
the sum of squared deviations (nssd) and therefore an increase
in uncertainties, and analog results are obtained using a poly-
nomial fit.

We verified that performing a zero-noise extrapolation
(ZNE) of each one of the terms in the Hamiltonian and then
combining them to obtain the full expectation value leads to
similar results (and error metrics) as performing directly a
ZNE of the full expectation value of the Hamiltonian.

We also explored a 2D minimization on the virtual machine
employing the noise model of the IBM five qubit machine
Bogota [40] using the full Hamiltonian obtained from a BK
mapping and the ansatz reported in Fig. 2, middle panel.
We performed some preliminary runs using the new QISKIT
feature runtime [39], performing readout error mitigation for
each function evaluation and using a variety of minimiza-
tion methods, and obtained for the best case a value of the
energy about 0.5 MeV higher than the actual ground-state
energy. We performed successive runs using the machine
noise model, applying readout error mitigation and ZNE, in
particular using Richardson extrapolation, for each evaluation
of the cost function. In this last case, the result obtained was
almost in agreement with the exact numerical energy as can be
seen looking at Table IV. It is important to notice that while
using the noise model the minimization was successful us-
ing only the following derivative-free minimizers: COBYLA
[43], Powell [44], and Nelder Mead [45]. Using stochastic
gradient descent based minimizers, the results were between
1 and 2 (MeV) above the exact ground-state energy. We plan
to investigate this empirical observation in future work. We
notice here that for realistic nuclear problem sizes the classical
minimization procedure should make use of parallelization

TABLE IV. Results for the 2D minimization using IBM simula-
tor with the noise model of the five-qubit machine Bogota [40]. For
the virtual machine run with noise, we performed 30 function eval-
uations. Each function evaluation has been error mitigated following
the procedure described in the main text.

Type θ0123 θ0145 EGS(MeV)

Exact 2.70 2.42 −3.85
Statistical noise 2.32 2.30 −3.83
VM 2.38 2.61 −3.73

techniques such as the ones recently developed in Ref. [46]
for gradient descent optimizers.

IV. SUMMARY AND CONCLUSIONS

We have investigated the feasibility of present and future
quantum computers to prepare the ground state of nuclear
systems, with the goal of using quantum hardware in the fu-
ture to solve nuclear structure and dynamics problems that are
too large even for today’s leadership-class supercomputers.
We initially examined various encoding approaches of the
many-body problem and estimated their requirements in terms
of number of qubits and gate depth. Depending upon the type
of nuclear problem considered, different approaches may be
most effective. For shell-model and related Hamiltonians, sec-
ond quantized encodings like JW and BK are likely to be most
efficient. Order of 50 qubits would be sufficient to perform
calculations beyond what is possible today using classical
computers. However, the gate depth requirements (and hence
the gate fidelity) are rather strict, with order 108 gates required
to prepare a trial state within the UCCSD ansatz. Of course,
further simplifications could be made to reduce the gate count.
For the case of Hamiltonians with realistic nucleon-nucleon
interactions fit to nucleon-nucleon phase shifts, the number of
single-particle basis states, typically implemented on a lattice,
is considerably larger. This is primarily driven by the range
of the nucleon-nucleon interaction being comparable to the
average separation between nucleons in a nucleus. In this case,
first-quantized methods, which scale only logarithmically in
the number of basis, may be optimal, particularly for cases
with a modest number of nucleons.

For the second quantized encodings, we examined some
simple test problems in which only a few nucleons are active
in a restricted model space. In this case, exact numerical solu-
tions are available, enabling us to examine the von Neumann
entropy. We also designed circuits for different encodings
for these simple problems. We found that on simulators we
can reproduce the exact results, which gives us confidence in
the mapping from a second quantization formalism to Pauli
strings. However, the hardware quality is not yet fully suffi-
cient to model even relatively simple models like the ones in
this study. We did run on both emulators and on actual hard-
ware employing standard error mitigation techniques. These
are effective for the most simple cases. With further advances
in quantum hardware and algorithms, we expect a wide variety
of problems in nuclear structure and particularly reactions to
be amenable to exact solutions.
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APPENDIX: SIMPLE CIRCUITS

We report here a derivation of the circuits used in the main
text for the first quantized problem. We use a bitonic swap
network to generate the antisymmetrized wave function.

Strictly speaking, for two particles in a given model space,
the UCCD would be given by Eq. (4), and if we restrict
ourselves to two-particle, two-hole excitations from the lowest
two states into the next two higher states it is

U (θ0123) = θ0123(a†
3a†

2a1a0 − a†
0a†

1a2a3). (A1)

Using the JW mapping in Eqs. (4) and (5), we map the opera-
tor U into

U (θ0123) = −i
θ0123

8
(X0X1X2Y3 + X0X1Y2X3

− X0Y1X2X3 + X0Y0Y2Y3

− Y0X1X2X3 + Y0X1Y2Y3

− Y0Y1X2Y3 − Y0Y1Y2X3). (A2)

All the terms in U (θ0123) commute with each other, but naively
exponentiating this operator would result into a circuit with
a large number of CNOT gates (each term would require six
CNOTs, but some of them would cancel out), which would
make it very difficult to be used on current hardware. Using
the circuit in Fig. 12 of Ref. [32] reduces the number of
CNOT gates to 14, 28 in total for the two-particle, two-hole
configurations promoting particles from states 0, 1 into states

2, 3 and 4, 5. This is still significantly more than the number
of CNOTs in the simplified circuit in Fig. 2.

One can easily check that the circuit in the JW mapping
in Fig. 2 produces combinations of |000011〉, |001100〉, and
|110000〉, which is all the operator in Eq. (3) can produce
if we only consider θ0123 and θ0145 (the other two circuits
produce the same types of excitations). To verify this, let us
first consider the contribution from θ0123 in Fig. 2 (only the
boxed gates), or equivalently the circuit in Fig. 4. The initial
state is |000000〉 (we do not act on qubits 4 and 5 yet, but
keep them in the basis), and applying the gates listed in Fig. 4
yields

(|01〉〈01| ⊗ I0 + |11〉〈11| ⊗ X 0)

× (|02〉〈02| ⊗ I1 + |12〉〈12| ⊗ X 1)

× (|03〉〈03| ⊗ I2 + |13〉〈13| ⊗ X 2)
× R2

y (θ0123)X 1|000000〉
= cos(θ0123)|110000〉 + sin(θ01234)|001100〉,

where the upper indexes label the qubit index on which each
operator acts. If θ0123 = 0, we recover the HF solution, as
expected.

The following gates acting on qubits 0, 1, 4, and 5 in
Fig. 2 are similar, the only difference being that now the
rotation of qubit q4 is controlled by qubit q1, thus produc-
ing the extra state |000011〉. The derivation proceeds in the
same way for the BK or first quantization mappings, the
only difference being that in these cases it is harder to vi-
sualize the states that are needed to be created, unlike JW
mapping which is the occupation representation. For the BK
mapping, where one encodes the sum of the previous occu-
pations modulo 2, the HF state is represented by |100000〉,
and the select 2p-2h configurations are mapped into |001000〉
and |000010〉. In the first quantization, the six single-particle
states map as follows: 0 → |000〉, 1 → |001〉, 2 → |010〉,
3 → |011〉, 4 → |100〉, and 5 → |101〉, so that the HF state
maps into (|001000〉 − |000001〉)/

√
2, while the other 2p-2h

configurations are given by (|010011〉 − |011010〉)/
√

2 and
(|100101〉 − |101100〉)/

√
2.
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