Ph 203. Solution HW \#2

1.) Nuclear potential
(a) Square well potential
n-p triplet scattering:

$$
a_{t}=-\lim _{k \rightarrow 0} \frac{\delta_{0}}{k},
$$

where δ_{0} is given by $k r_{0}\left(\frac{\tan \left(k r_{0}\right)}{k r_{0}}-1\right)$, with $k=\sqrt{2 m V_{0}}$. n-p triplet bound state (deuteron):

$$
K^{\prime} \cot \left(K^{\prime} r_{0}\right)=-k^{\prime},
$$

where $K^{\prime}=\sqrt{2 \mu\left(V_{0}-E_{B}\right)}$ and $k^{\prime}=\sqrt{2 \mu E_{B}}$.
Need to solve numerically

$$
\left\{\begin{array}{l}
a_{t}=-r_{0}\left(\frac{\tan \left(k r_{0}\right)}{k r_{0}}-1\right) \\
K^{\prime} \cot \left(K^{\prime} r_{0}\right)=-k^{\prime},
\end{array}\right.
$$

for V_{0}, r_{0}, given $a_{t}=5.4 \mathrm{fm}, E_{B}=2.22 \mathrm{MeV}$ and $\mu \approx m_{p} / 2=469$ MeV , which yields

$$
\begin{gathered}
r_{0} \approx 2.1 \mathrm{fm} \\
V_{0} \approx 34.2 \mathrm{MeV}
\end{gathered}
$$

(b) Effective range r_{e}

$$
k \cot \left(\delta_{0}\right)=-\frac{1}{a_{t}}+\frac{r_{e} k^{2}}{2}+\ldots
$$

Need to find $\delta_{0}(k)$. Using the above equations and expanding,

$$
\begin{aligned}
\delta_{0}(k) & =-k r_{0}+\tan ^{-1}\left(-k\left(a_{t}-r_{0}\right)\right) \\
& =-k r_{0}-k\left(a_{t}-r_{0}\right)-\frac{1}{3} k^{3}\left(a_{t}-r_{0}\right)^{3} \\
& =-k a_{t}-\frac{1}{3} k^{3}\left(a_{t}-r_{0}\right)^{3}+\ldots
\end{aligned}
$$

Then we have

$$
k \cot \left(\delta_{0}(k)\right)=-\frac{1}{a_{t}}+\frac{a_{t}^{3}+\left(a_{t}-r_{0}\right)^{3}}{3 a_{t}^{3}} k^{2}+\mathcal{O}\left(k^{3}\right) .
$$

Therefore the effective range is given by (using numerical values from (a))

$$
r_{e}=\frac{2}{3} \frac{a_{t}^{3}+\left(a_{t}-r_{0}\right)^{3}}{a_{t}^{2}} \approx 4.4 \mathrm{fm} .
$$

In Bertulani chapter 2.10, r_{e} is given for arbitrary potential using the binding energy $\rightarrow r_{e} \approx 1.76 \mathrm{fm}$. The radial square well potential, for which we computed r_{e} above, doesn't match the observed r_{e} very well \rightarrow more complicated motential needed.
2.) Molecular deuterium ground state
a) molecular hydrogen: need overall wavefunction antisymmetric under $p \leftrightarrow p$. Let S be the total spin of $p p$ and L the orbital angular momentum:
(i) $S=0$ (spin singlet, antisymmetric) $\rightarrow L=$ even,
(ii) $S=1$ (spin triplet, symmetric) $\rightarrow L=$ odd.

Assuming lower rotational modes have lower energy \Rightarrow ground state $L=0$ is a spin singlet (parahydrogen).
b) molecular deuterium: need wavefunction symmetric under $d \leftrightarrow d$ since deuteron has spin 1. Then we have
(i) $S=0$ (spin singlet, symmetric) $\rightarrow L=$ even,
(ii) $S=1$ (spin triplet, antisymmetric) $\rightarrow L=$ odd,
(iii) $S=2$ (5 states, symmetric) $\rightarrow L=$ even.
\Rightarrow ground state $L=0$ is a symmetric spin state (ortho).
c) L is even for ortho, L odd for para
3.) Deuteron wavefunction

First, construct deuteron wavefunction for $j=1, m_{j}=1$ state

$$
\psi(\vec{r})=a \phi_{1 s}(\vec{r})+b \phi_{1 d}(\vec{r}),
$$

with the wavefunctions

$$
\begin{gathered}
\phi_{1 s}(\vec{r})=R_{1 s}(r) Y_{0}^{0}(\theta, \phi)|1,1\rangle \\
\phi_{1 d}(\vec{r})=R_{1 d}(r)\left(\sqrt{\frac{3}{5}} Y_{2}^{2}(\theta, \phi)|1,-1\rangle-\sqrt{\frac{3}{10}} Y_{2}^{1}(\theta, \phi)|1,0\rangle+\sqrt{\frac{1}{10}} Y_{2}^{0}(\theta, \phi)|1,1\rangle\right) .
\end{gathered}
$$

Radius: $r_{0} \equiv \sqrt{\left\langle r^{2}\right\rangle}=1.96 \mathrm{fm}$

$$
\begin{aligned}
\left\langle r^{2}\right\rangle & =\langle\psi| r^{2}|\psi\rangle \\
& =|a|^{2} \int_{0}^{\infty} d r r^{4}\left|R_{1 s}\right|^{2}+|b|^{2} \int_{0}^{\infty} d r r^{4}\left|R_{1 d}\right|^{2} \\
& =|a|^{2} \frac{3}{2 \alpha}+|b|^{2} \frac{7}{2 \alpha}=\frac{3}{2 \alpha}+|b|^{2} \frac{2}{\alpha},
\end{aligned}
$$

using $|a|^{2}=1-|b|^{2}$. We assume $|b| \ll 1 \Rightarrow$ to linear order in b, we have

$$
\left\langle r^{2}\right\rangle \cong \frac{3}{2 \alpha} .
$$

Quadrupole moment: $\hat{Q}=e \sqrt{\frac{16 \pi}{5}} r^{2} Y_{2}^{0}(\theta, \phi), q_{0} \equiv\langle\hat{Q}\rangle=0.286$ efm

$$
\begin{aligned}
\langle\hat{Q}\rangle & =|a|^{2} \int d^{3} r \phi_{1 s}^{*} \hat{Q} \phi_{1 s}+|b|^{2} \int d^{3} r \phi_{1 d}^{*} \hat{Q} \phi_{1 d} \\
& +2 \operatorname{Re}\left[a b^{*} \int d^{3} r \phi_{1 d}^{*} \hat{Q} \phi_{1 s}\right],
\end{aligned}
$$

\rightarrow first term vanishes. This is due to the Y_lm orthogonality (i.e $<\mathrm{Y} _00 \mid \mathrm{Y} _20>=0$)
\rightarrow second term can be neglected to linear order in $|b|$
\rightarrow third term: only non-vanishing term is spin $|1,1\rangle$ term

$$
\begin{aligned}
\int d^{3} r \phi_{1 d}^{*} \hat{Q} \phi_{1 s}= & e \sqrt{\frac{16 \pi}{5}} \sqrt{\frac{1}{10}} \int d r r^{4} R_{1 s} R_{1 d} \int d \Omega Y_{2}^{0 *} Y_{2}^{0} Y_{0}^{0}=\frac{e}{2 \alpha} \sqrt{\frac{6}{5}} \\
& \Rightarrow\langle\hat{Q}\rangle=\frac{e}{\alpha} \sqrt{\frac{6}{5}} \operatorname{Re}[b]=\frac{2 e r_{0}^{2}}{3} \sqrt{\frac{6}{5}} \operatorname{Re}[b] \\
& \Rightarrow \text { for } b \in \mathbf{R}, b \approx \frac{3 q_{0}}{2 e r_{0}^{2}} \sqrt{\frac{5}{6}} \approx 0.1
\end{aligned}
$$

so deuteron has approximately $1 \% d$-wave and $99 \% s$-wave.
4.) Scattering rate for spin flip

Scattering amplitude $f(\theta) \propto\langle f| \hat{H}|i\rangle$, where $|i\rangle$ and $|f\rangle$ denote the initial and final state, respectively. For low energy scattering $k \rightarrow 0$ (s-wave scattering only):

$$
f(\theta) \approx-a
$$

where a is the scattering length.
Total scattering rate: average over initial states, sum over final states

$$
\begin{aligned}
\sigma_{t o t} & \left.\propto \frac{1}{4} \sum_{i, f}|\langle f| \hat{H}| i\right\rangle\left.\right|^{2} \\
& \left.\left.\left.\left.\propto \frac{1}{4}(|\langle++| \hat{H}|++\rangle\right|^{2}+|\langle++| \hat{H}|+-\right\rangle\left.\right|^{2}+|\langle++| \hat{H}|-+\right\rangle\left.\right|^{2}+\ldots\right) \\
& \left.\left.\left.\propto \frac{1}{4}(|\langle++| \hat{H}|++\rangle\right|^{2}+|\langle+-| \hat{H}|+-\right\rangle\left.\right|^{2}+|\langle+-| \hat{H}|-+\right\rangle\left.\right|^{2} \\
& \left.\left.\left.+|\langle-+| \hat{H}|+-\rangle\left.\right|^{2}+|\langle-+| \hat{H}|-+\right\rangle\left.\right|^{2}+|\langle--| \hat{H}|--\right\rangle\left.\right|^{2}\right),
\end{aligned}
$$

where in the last line we wrote down only the non-zero matrix elements. Recall that

Hence we obtain

$$
\begin{aligned}
\langle+-| \hat{H}|+-\rangle & =\frac{1}{2}\left(a_{t}+a_{s}\right), \\
\langle+-| \hat{H}|-+\rangle & =\frac{1}{2}\left(a_{t}-a_{s}\right), \\
\langle-+| \hat{H}|+-\rangle & =\frac{1}{2}\left(a_{t}-a_{s}\right), \\
\langle-+| \hat{H}|-+\rangle & =\frac{1}{2}\left(a_{t}+a_{s}\right) .
\end{aligned}
$$

Plugging back to the expression for the total cross-section

$$
\begin{aligned}
\sigma_{t o t} & \propto \frac{1}{4}\left(a_{t}^{2}+2 \times \frac{1}{4}\left(a_{t}+a_{s}\right)^{2}+2 \times \frac{1}{4}\left(a_{t}-a_{s}\right)^{2}+a_{t}^{2}\right) \\
& \propto \frac{3}{4} a_{t}^{2}+\frac{1}{4} a_{s}^{2} .
\end{aligned}
$$

Repeating the above steps for the cross-section for a spin flip

$$
\begin{aligned}
\sigma_{f l i p} & \left.\left.\left.\propto \frac{1}{4}(|\langle+-| \hat{H}|-+\rangle\right|^{2}+|\langle-+| \hat{H}|+-\right\rangle\left.\right|^{2}\right) \\
& \propto \frac{1}{4}\left(2 \times \frac{1}{4}\left(a_{t}-a_{s}\right)^{2}\right) \\
& \propto \frac{1}{8}\left(a_{t}-a_{s}\right)^{2} .
\end{aligned}
$$

Therefore the probability of spin flip is

$$
\frac{\sigma_{f l i p}}{\sigma_{t o t}}=\frac{\left(a_{t}-a_{s}\right)^{2}}{2\left(3 a_{t}^{2}+a_{s}^{2}\right)} \approx 65 \%
$$

5.) Bertulani 2.4 and 2.12
a) potential well with hard core

$$
V(r)= \begin{cases}\infty & \text { for } r<c \\ -V_{0} & \text { for } c<r<R+c \\ 0 & \text { for } r>R+c\end{cases}
$$

Radial part of bound state wavefunction (following Bertulani):

$$
u(r)= \begin{cases}0 & \text { for } r<c \\ A \sin [K(r-c)] & \text { for } c<r<R+c \\ B \mathrm{e}^{-k r} & \text { for } r>R+c\end{cases}
$$

where $k=\sqrt{2 \mu E_{B}}$ and $K=\sqrt{2 \mu\left(V_{0}-E_{B}\right)}$.
Boundary matching at $r=R+c$:

$$
\text { continuity: } A \sin [K R]=B \mathrm{e}^{-k(R+c)}
$$

1st derivative: $A K \cos [K R]=-B k \mathrm{e}^{-k(R+c)}$

$$
\Rightarrow K \cot [K R]=-k
$$

b) scattering off a hard sphere potential

$$
V(r)= \begin{cases}\infty & \text { for } r<r_{0} \\ 0 & \text { for } r>r_{0}\end{cases}
$$

Radial wavefunction

$$
u(r)= \begin{cases}0 & \text { for } r<r_{0} \\ A \sin \left(k r+\delta_{0}\right) & \text { for } r>r_{0}\end{cases}
$$

Boundary matching at $r=r_{0}: A \sin \left(k r_{0}+\delta_{0}\right)=0$

$$
\Rightarrow \delta_{0}=-k r_{0}
$$

Hence the cross-section for low energy scattering ($k \ll \frac{1}{r_{0}}$):

$$
\sigma=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0} \approx \frac{4 \pi}{k^{2}} \delta_{0}^{2}=4 \pi r_{0}^{2}
$$

