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by Sean Tulin

1.) Scattering at θ = 90◦

Recall that dσ
dΩ

= |f(θ)|2, where

f(θ) =
1

k

∞∑

l=0

(2l + 1)eiδl sin(δl)Pl(cos θ)

Since Pl(0) = 0 for l odd, scattering only occurs for even l at θ = π
2
.

Next, pp is symmetric under isospin, but must be in a totally antisym-
metric state:

{
s = 0 (antisymm) → l = even (symm)

s = 1 (symm) → l = odd (antisymm).

⇒
(

dσ
dΩ

)
θ=π

2

is only non-zero for pp in s = 0 state.

On the other hand, np can be in isosinglet or isotriplet state, so the
cross-section at θ = π

2
is non-zero for both s = 0 and s = 1.

For unpolarized scattering, average over initial polarisations of incom-
ing particles (dσpp

dΩ

)
θ=π

2

=
1

4

(dσs
pp

dΩ

)
θ=π

2

(dσnp

dΩ

)
θ=π

2

=
1

4

(dσs
np

dΩ
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θ=π

2

+
3

4

(dσt
np

dΩ

)
θ=π

2

,

where superscripts s and t denote spin singlet and triplet, respectively.
Assuming charge independence of the nuclear force

(dσs
pp

dΩ

)
θ=π

2

=
(dσs

np

dΩ

)
θ=π

2

and
(

dσt
np

dΩ

)
θ=π

2

≥ 0, we have

(dσpp

dΩ

)
θ=π

2

≤
(dσnp

dΩ

)
θ=π

2



1

Ph 203. Solution HW #3



2.) Angular momentum and parity of deuteron.
Suppose the deuteron was JP = 0−.
P = 1 ⇒ l = odd,
J = 0 ⇒ S = 1 and L = 1,
S = 1 is symmetric and L = 1 is antisymmetric ⇒ I = 1 (symmetric).

In summary S = 1, L = 1 and I = 1. If this was the ground state, it
would imply the existence of a large term a~L · ~S (with a > 0) in the

Hamiltonian. (~L · ~S ∝ j(j+1) l(l+1) s(s+1), lowering the energy

when ~L is anti-aligned with ~S.)
This term must be large enough to overcome the centrifugal potential
term that disfavours a ground state with l 6= 0.

3.) Strong interaction processes

π− + p → K0 + Λ0

π0 + n → K0 + Λ0

LHS has I3 = 1
2
, with π having total I = 1 (triplet) and n/p belonging

to I = 1
2
doublet.

⇒ K0 has (I, I3) = (1
2
,1

2
) or (3

2
,1

2
).

The latter possibility can be ruled out since there is no K++ state (i.e.
no (3

2
, 3
2
)) or by the fact that π− + n → K− + Λ0 does not occur (as it

would if K− = (3
2
,3

2
)).

Therefore K0 has (I, I3) = (1
2
,1

2
).

Using Clebsch-Gordan coecients,


1,1;

1

2
,
1

2

∣∣∣1
2
,1

2


= 

√
2

3


1, 0;

1

2
,1

2

∣∣∣1
2
,1

2


= 

√
1

3

⇒ σ(π−p → K0Λ0)

σ(π0n → K0Λ0)
=

2
3
1
3

= 2

2



4.) Tensor operators
First, lets consider how to decompose a dyadic tensor (a two-component
tensor formed from two cartesian vectors, e.g. Tij = uivj) in terms of
irreducible spherical tensors.

Tij = uivj =
u · v
3

δij +
uivj  ujvi

2
+
(uivj + ujvi

2
 u · v

3
δij

)
,

where the rst term is the j = 0 scalar part, the second term the j = 1
vector part and the third is j = 2 tensor part.
Therefore we can write (r̂ = ~rr is a unit vector)

Ŝ12 = 3
(σ1iσ2j + σ1jσ2i

2
 σ1 · σ2

3
δij

)( r̂ir̂j + r̂j r̂i
2

 r̂ · r̂
3

δij

)
,

so that Ŝ12 is a scalar operator that can be written as a product of two
j = 2 irreducible tensor operators.
Recall that from two spherical tensors Bm1

j1
, Cm2

j2
we can construct

another spherical tensor

Am
j =

∑

m1, m2

〈j1,m1; j2,m2|j,m〉Bm1
j1

Cm2
j2

,

where 〈j1,m1; j2,m2|j,m〉 are the Clebsch-Gordan coecients. Hence
we have for a scalar

Ŝ12 = 3
∑

m1, m2

〈2, m1; 2, m2|0, 0〉 (σ1σ2)
m1
j1=2(r̂r̂)

m2
j2=2

= 3
∑

m

〈2, m; 2,m|0, 0〉 (σ1σ2)
m
j1=2(r̂r̂)

−m
j2=2

Lastly, need to relate (r̂r̂)m2 to spherical harmonics Y m
2 (θ,φ), where

r̂ = (sin θ cosφ, sin θ sinφ, cos θ).
For Tij = uivj , the spherical tensors Tm

j are:

T 0
0 =

u · v
3

=
1

3
(u+1v−1 + u−1v+1  u0v0)

Tm
1 =

(~u× ~v)m

i
√
2

3



T±2
2 = u±1v±1

T±1
2 =

u±1v0 + u0v±1√
2

T 0
2 =

1√
6
(u+1v−1 + u−1v+1 + 2u0v0),

where u0 = uz, u±1 = (ux±iuy)
√
2 is the j = 1(m = 0,±1) spherical

decomposition of a vector ~u = (ux, uy, uz) (see for example Sakurai Ch.
310).
Plugging in, we get for example

(r̂r̂)02 =
1√
6
(2
r̂xr̂x + r̂y r̂y

2
+ 2r̂z r̂z) =

1√
6
(3 cos2 θ  1) =

√
8π

15
Y 0
2 (θ,φ),

and so on. Hence (r̂r̂)m2 =


8π
15
Y m
2 (θ,φ). Therefore we have

Ŝ12 =

√
24π

5

∑

m

〈2, m; 2,m|0, 0〉 (σ1σ2)
m
2 Y

−m
2 (θ,φ)

5.) Innite vs nite range force
Innite range
Poisson equation: ∇2φ(~r) = 4πeδ3(~r). In momentum space

φ(~r) =

∫
d3p

(2π)3
φ̃(~p)e−i~p·~r,

the equation becomes

∫
d3p

(2π)3
φ̃(~p)(p2)e−i~p·~r = 4πe

∫
d3p

(2π)3
e−i~p·~r

⇒ φ̃ =
4πe

p2

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Now, integrate

φ(~r) =

∫
d3p

(2π)3
φ̃(~p)e−i~p·~r =

∫
d3p

(2π)3
4πe

p2
e−i~p·~r

=
e

π

∫
dp p2

∫
dθ sin θ

e−ipr cos θ

p2

=
e

π

∫ ∞

0

dp
e−ipr  eipr

ipr

=
ie

πr

∫ ∞

−∞
dp

e−ipr

p
=

ie

πr
(iπ) =

e

r
,

using contour integration.
Finite range (

∇2  1

r20

)
φ(~r) = 4πgδ3(~r)

Repeating the steps above we obtain

φ̃ =
4πg

p2 + 1
r20

=
4πg

(p+ i
r0
)(p i

r0
)


Integrating in the complex plane as before

φ(~r) =

∫
d3p

(2π)3
φ̃(~p)e−i~p·~r =

∫
d3p

(2π)3
4πg

p2 + 1
r20

e−i~p·~r

=  g

π

∫ ∞

0

dp
p2

p2 + 1
r20

e−ipr  eipr

ipr

= g
e−r/r0

r


Lastly,virtual particle of energy E can be created for time δt, as long
as Eδt ∼ h̄ = 1 (in our units). E ∼ mc2 and δt ∼ r0c, therefore
r0 ∼ cδt ∼ h̄cE ∼ h̄mc.
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6.) Bertulani 3.11.
(a) Interaction of the neutron magnetic moment with the Coulomb
eld of the proton, for nonrelativistic relative np motion, leads to an
additional term in the Hamiltonian

H ′ = ~µ · ~B = V (r)(~L · ~sn),

where V (r) ∝ 1
r3
.

(b) For np system, total angular momentum is ~J ≡ ~L+ ~sn + ~sp, where
~sn and ~sp are spins of neutron and proton.

[H ′, ~J ] = 0 ⇒ (j,mj) are constants of motion.

(c) For unperturbed Hamiltonian, the states are labelled by |j,mj ; l; s〉.
We want to express these states in terms of eigenstates of ~L · ~sn. Lets
dene a new semi-total angular momentum

~J ′ ≡ ~L+ ~sn,

with eigenstates
∣∣j ′,m′

j


such that |~J ′|2

∣∣j ′,m′
j


= j ′(j ′ + 1)

∣∣j ′,m′
j


.

Then
∣∣j ′,m′

j


are also eigenstates of ~L · ~sn = 1

2
(|~J ′|2  |~L|2  |~sn|2). We

need to write in a new basis

|j,mj ; l; s〉 =x1

∣∣∣∣j ′ = j +
1

2
,m′

j = mj 
1

2


⊗

∣∣∣∣
1

2
,
1

2



p

+ x2

∣∣∣∣j ′ = j +
1

2
,m′

j = mj +
1

2


⊗

∣∣∣∣
1

2
,1

2



p

+ x3

∣∣∣∣j ′ = j  1

2
,m′

j = mj 
1

2


⊗

∣∣∣∣
1

2
,
1

2



p

+ x4

∣∣∣∣j ′ = j  1

2
,m′

j = mj +
1

2


⊗

∣∣∣∣
1

2
,1

2



p

,

where xi(j, l, s) are Clebsch-Gordan coecients (functions of j, l, s) and∣∣1
2
,msp


p
denote proton spin states.

The unperturbed states are degenerate in mj . Since [ ~J, ~L · ~sn] = 0, H ′

will not mix states of denite (j,mj).
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To lowest order in perturbation theory, the shift in energy is

∆E = V (r) 〈j,mj ; l; s| ~L · ~sn |j,mj ; l; s〉

=
1

2
V (r)

4∑

i=1

(
|xi(j, l, s)|2


j ′(j ′ + 1) l(l + 1) 3

4

)

=
1

2
V (r)

(
(j(j + 2) l(l + 1) (2j + 2)


|x3|2 + |x4|2

)
,

where in the last line we used the equation above to plug in for j′ and
simplied the expression using the fact that

4
i=1 |xi(j, l, s)|2 = 1. For

example, for deuteron (j = 1, l = 0, s = 1):

|j = 1, mj ; l = 0; s = 1〉 =





∣∣j ′ = 1
2
,m′

j =
1
2


⊗

∣∣1
2
, 1
2


p
for mj = 1

1√
2

( ∣∣j ′ = 1
2
,m′

j = 1
2


⊗

∣∣1
2
, 1
2


p

+
∣∣j ′ = 1

2
,m′

j =
1
2


⊗

∣∣1
2
,1

2


p

)
for mj = 0

∣∣j ′ = 1
2
,m′

j = 1
2


⊗

∣∣1
2
,1

2


p
for mj = 1



For deuteron,
〈
~L · ~sn

〉
= 1

2
(j ′(j ′ + 1)  l(l + 1)  3

4
) = 0 for l = 0, so

no shift in binding energy (may be some shift due to l = 2 component
in wavefunction).
(d) Outside of range of nuclear forces, the perturbation Hamiltonian
will favor congurations in which neutron spin is aligned with protons
magnetic eld.
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