Ph 203. Solution HW \#3

1.) Scattering at $\theta=90^{\circ}$

Recall that $\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}$, where

$$
f(\theta)=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) \mathrm{e}^{i \delta_{l}} \sin \left(\delta_{l}\right) P_{l}(\cos \theta) .
$$

Since $P_{l}(0)=0$ for l odd, scattering only occurs for even l at $\theta=\frac{\pi}{2}$. Next, $p p$ is symmetric under isospin, but must be in a totally antisymmetric state:

$$
\left\{\begin{array}{l}
s=0(\text { antisymm }) \rightarrow l=\operatorname{even}(\operatorname{symm}) \\
s=1(\text { symm }) \rightarrow l=\text { odd }(\text { antisymm }) .
\end{array}\right.
$$

$\Rightarrow\left(\frac{d \sigma}{d \Omega}\right)_{\theta=\frac{\pi}{2}}$ is only non-zero for $p p$ in $s=0$ state.
On the other hand, $n p$ can be in isosinglet or isotriplet state, so the cross-section at $\theta=\frac{\pi}{2}$ is non-zero for both $s=0$ and $s=1$.
For unpolarized scattering, average over initial polarisations of incoming particles

$$
\begin{gathered}
\left(\frac{d \sigma_{p p}}{d \Omega}\right)_{\theta=\frac{\pi}{2}}=\frac{1}{4}\left(\frac{d \sigma_{p p}^{s}}{d \Omega}\right)_{\theta=\frac{\pi}{2}} \\
\left(\frac{d \sigma_{n p}}{d \Omega}\right)_{\theta=\frac{\pi}{2}}=\frac{1}{4}\left(\frac{d \sigma_{n p}^{s}}{d \Omega}\right)_{\theta=\frac{\pi}{2}}+\frac{3}{4}\left(\frac{d \sigma_{n p}^{t}}{d \Omega}\right)_{\theta=\frac{\pi}{2}}
\end{gathered}
$$

where superscripts s and t denote spin singlet and triplet, respectively. Assuming charge independence of the nuclear force

$$
\left(\frac{d \sigma_{p p}^{s}}{d \Omega}\right)_{\theta=\frac{\pi}{2}}=\left(\frac{d \sigma_{n p}^{s}}{d \Omega}\right)_{\theta=\frac{\pi}{2}}
$$

and $\left(\frac{d \sigma_{n p}^{t}}{d \Omega}\right)_{\theta=\frac{\pi}{2}} \geq 0$, we have

$$
\left(\frac{d \sigma_{p p}}{d \Omega}\right)_{\theta=\frac{\pi}{2}} \leq\left(\frac{d \sigma_{n p}}{d \Omega}\right)_{\theta=\frac{\pi}{2}} .
$$

2.) Angular momentum and parity of deuteron.

Suppose the deuteron was $J^{P}=0^{-}$.
$P=-1 \Rightarrow l=$ odd,
$J=0 \Rightarrow S=1$ and $L=1$,
$S=1$ is symmetric and $L=1$ is antisymmetric $\Rightarrow I=1$ (symmetric).

In summary $S=1, L=1$ and $I=1$. If this was the ground state, it would imply the existence of a large term $a \vec{L} \cdot \vec{S}$ (with $a>0$) in the Hamiltonian. $(\vec{L} \cdot \vec{S} \propto j(j+1)-l(l+1)-s(s+1)$, lowering the energy when \vec{L} is anti-aligned with \vec{S}.)
This term must be large enough to overcome the centrifugal potential term that disfavours a ground state with $l \neq 0$.
3.) Strong interaction processes

$$
\begin{aligned}
& \pi^{-}+p \rightarrow K^{0}+\Lambda^{0} \\
& \pi^{0}+n \rightarrow K^{0}+\Lambda^{0}
\end{aligned}
$$

LHS has $I_{3}=-\frac{1}{2}$, with π having total $I=1$ (triplet) and n / p belonging to $I=\frac{1}{2}$ doublet.
$\Rightarrow K^{0}$ has $\left(I, I_{3}\right)=\left(\frac{1}{2},-\frac{1}{2}\right)$ or $\left(\frac{3}{2},-\frac{1}{2}\right)$.
The latter possibility can be ruled out since there is no K^{++}state (i.e. no $\left(\frac{3}{2}, \frac{3}{2}\right)$) or by the fact that $\pi^{-}+n \rightarrow K^{-}+\Lambda^{0}$ does not occur (as it would if $\left.K^{-}=\left(\frac{3}{2},-\frac{3}{2}\right)\right)$.
Therefore K^{0} has $\left(I, I_{3}\right)=\left(\frac{1}{2},-\frac{1}{2}\right)$.
Using Clebsch-Gordan coefficients,

$$
\begin{aligned}
& \left\langle 1,-1 ; \frac{1}{2}, \left.\frac{1}{2} \right\rvert\, \frac{1}{2},-\frac{1}{2}\right\rangle=-\sqrt{\frac{2}{3}} \\
& \left\langle 1,0 ; \frac{1}{2}, \left.-\frac{1}{2} \right\rvert\, \frac{1}{2},-\frac{1}{2}\right\rangle=-\sqrt{\frac{1}{3}} \\
& \Rightarrow \frac{\sigma\left(\pi^{-} p \rightarrow K^{0} \Lambda^{0}\right)}{\sigma\left(\pi^{0} n \rightarrow K^{0} \Lambda^{0}\right)}=\frac{\frac{2}{3}}{\frac{1}{3}}=2 .
\end{aligned}
$$

4.) Tensor operators

First, let's consider how to decompose a dyadic tensor (a two-component tensor formed from two cartesian vectors, e.g. $T_{i j}=u_{i} v_{j}$) in terms of irreducible spherical tensors.

$$
T_{i j}=u_{i} v_{j}=\frac{u \cdot v}{3} \delta_{i j}+\frac{u_{i} v_{j}-u_{j} v_{i}}{2}+\left(\frac{u_{i} v_{j}+u_{j} v_{i}}{2}-\frac{u \cdot v}{3} \delta_{i j}\right),
$$

where the first term is the $j=0$ scalar part, the second term the $j=1$ vector part and the third is $j=2$ tensor part.
Therefore we can write ($\hat{r}=\vec{r} / r$ is a unit vector)

$$
\hat{S_{12}}=3\left(\frac{\sigma_{1 i} \sigma_{2 j}+\sigma_{1 j} \sigma_{2 i}}{2}-\frac{\sigma_{1} \cdot \sigma_{2}}{3} \delta_{i j}\right)\left(\frac{\hat{r}_{i} \hat{r}_{j}+\hat{r}_{j} \hat{r}_{i}}{2}-\frac{\hat{r} \cdot \hat{r}}{3} \delta_{i j}\right),
$$

so that $\hat{S_{12}}$ is a scalar operator that can be written as a product of two $j=2$ irreducible tensor operators.
Recall that from two spherical tensors $B_{j_{1}}^{m_{1}}, C_{j_{2}}^{m_{2}}$ we can construct another spherical tensor

$$
A_{j}^{m}=\sum_{m_{1}, m_{2}}\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle B_{j_{1}}^{m_{1}} C_{j_{2}}^{m_{2}}
$$

where $\left\langle j_{1}, m_{1} ; j_{2}, m_{2} \mid j, m\right\rangle$ are the Clebsch-Gordan coefficients. Hence we have for a scalar

$$
\begin{aligned}
\hat{S_{12}} & =3 \sum_{m_{1}, m_{2}}\left\langle 2, m_{1} ; 2, m_{2} \mid 0,0\right\rangle\left(\sigma_{1} \sigma_{2}\right)_{j_{1}=2}^{m_{1}}(\hat{r} \hat{r})_{j_{2}=2}^{m_{2}} \\
& =3 \sum_{m}\langle 2, m ; 2,-m \mid 0,0\rangle\left(\sigma_{1} \sigma_{2}\right)_{j_{1}=2}^{m}(\hat{r} \hat{r})_{j_{2}=2}^{-m} .
\end{aligned}
$$

Lastly, need to relate $(\hat{r} \hat{r})_{2}^{m}$ to spherical harmonics $Y_{2}^{m}(\theta, \phi)$, where $\hat{r}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$.
For $T_{i j}=u_{i} v_{j}$, the spherical tensors T_{j}^{m} are:

$$
\begin{gathered}
T_{0}^{0}=\frac{u \cdot v}{3}=\frac{1}{3}\left(u_{+1} v_{-1}+u_{-1} v_{+1}-u_{0} v_{0}\right) \\
T_{1}^{m}=\frac{(\vec{u} \times \vec{v})^{m}}{i \sqrt{2}}
\end{gathered}
$$

$$
\begin{gathered}
T_{2}^{ \pm 2}=u_{ \pm 1} v_{ \pm 1} \\
T_{2}^{ \pm 1}=\frac{u_{ \pm 1} v_{0}+u_{0} v_{ \pm 1}}{\sqrt{2}} \\
T_{2}^{0}=\frac{1}{\sqrt{6}}\left(u_{+1} v_{-1}+u_{-1} v_{+1}+2 u_{0} v_{0}\right),
\end{gathered}
$$

where $u_{0}=u_{z}, u_{ \pm 1}=\mp\left(u_{x} \pm i u_{y}\right) / \sqrt{2}$ is the $j=1(m=0, \pm 1)$ spherical decomposition of a vector $\vec{u}=\left(u_{x}, u_{y}, u_{z}\right)$ (see for example Sakurai Ch. 3.10).

Plugging in, we get for example

$$
(\hat{r} \hat{r})_{2}^{0}=\frac{1}{\sqrt{6}}\left(2 \frac{\hat{r}_{x} \hat{r}_{x}+\hat{r}_{y} \hat{r}_{y}}{2}+2 \hat{r}_{z} \hat{r}_{z}\right)=\frac{1}{\sqrt{6}}\left(3 \cos ^{2} \theta-1\right)=\sqrt{\frac{8 \pi}{15}} Y_{2}^{0}(\theta, \phi),
$$

and so on. Hence $(\hat{r} \hat{r})_{2}^{m}=\sqrt{\frac{8 \pi}{15}} Y_{2}^{m}(\theta, \phi)$. Therefore we have

$$
\hat{S_{12}}=\sqrt{\frac{24 \pi}{5}} \sum_{m}\langle 2, m ; 2,-m \mid 0,0\rangle\left(\sigma_{1} \sigma_{2}\right)_{2}^{m} Y_{2}^{-m}(\theta, \phi)
$$

5.) Infinite vs finite range force

Infinite range

Poisson equation: $\nabla^{2} \phi(\vec{r})=-4 \pi e \delta^{3}(\vec{r})$. In momentum space

$$
\phi(\vec{r})=\int \frac{d^{3} p}{(2 \pi)^{3}} \tilde{\phi}(\vec{p}) \mathrm{e}^{-i \vec{p} \cdot \vec{r}},
$$

the equation becomes

$$
\begin{gathered}
\int \frac{d^{3} p}{(2 \pi)^{3}} \tilde{\phi}(\vec{p})\left(-p^{2}\right) \mathrm{e}^{-i \vec{p} \cdot \vec{r}}=-4 \pi e \int \frac{d^{3} p}{(2 \pi)^{3}} \mathrm{e}^{-i \vec{p} \cdot \vec{r}} \\
\Rightarrow \tilde{\phi}=\frac{4 \pi e}{p^{2}}
\end{gathered}
$$

Now, integrate

$$
\begin{aligned}
\phi(\vec{r}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \tilde{\phi}(\vec{p}) \mathrm{e}^{-i \vec{p} \cdot \vec{r}}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{4 \pi e}{p^{2}} \mathrm{e}^{-i \vec{p} \cdot \vec{r}} \\
& =\frac{e}{\pi} \int d p p^{2} \int d \theta \sin \theta \frac{\mathrm{e}^{-i p r} \cos \theta}{p^{2}} \\
& =\frac{e}{\pi} \int_{0}^{\infty} d p \frac{\mathrm{e}^{-i p r}-\mathrm{e}^{i p r}}{-i p r} \\
& =\frac{i e}{\pi r} \int_{-\infty}^{\infty} d p \frac{\mathrm{e}^{-i p r}}{p}=\frac{i e}{\pi r}(-i \pi)=\frac{e}{r}
\end{aligned}
$$

using contour integration.
Finite range

$$
\left(\nabla^{2}-\frac{1}{r_{0}^{2}}\right) \phi(\vec{r})=4 \pi g \delta^{3}(\vec{r})
$$

Repeating the steps above we obtain

$$
\tilde{\phi}=\frac{-4 \pi g}{p^{2}+\frac{1}{r_{0}^{2}}}=\frac{-4 \pi g}{\left(p+\frac{i}{r_{0}}\right)\left(p-\frac{i}{r_{0}}\right)} .
$$

Integrating in the complex plane as before

$$
\begin{aligned}
\phi(\vec{r}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \tilde{\phi}(\vec{p}) \mathrm{e}^{-i \vec{p} \cdot \vec{r}}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{-4 \pi g}{p^{2}+\frac{1}{r_{0}^{2}}} \mathrm{e}^{-i \vec{p} \cdot \vec{r}} \\
& =-\frac{g}{\pi} \int_{0}^{\infty} d p \frac{p^{2}}{p^{2}+\frac{1}{r_{0}^{2}}} \frac{\mathrm{e}^{-i p r}-\mathrm{e}^{i p r}}{-i p r} \\
& =-g \frac{\mathrm{e}^{-r / r_{0}}}{r} .
\end{aligned}
$$

Lastly, virtual particle of energy E can be created for time δt, as long as $E \delta t \sim \hbar=1$ (in our units). $E \sim m c^{2}$ and $\delta t \sim r_{0} / c$, therefore $r_{0} \sim c \delta t \sim \hbar c / E \sim \hbar / m c$.
6.) Bertulani 3.11.
(a) Interaction of the neutron magnetic moment with the Coulomb field of the proton, for nonrelativistic relative $n p$ motion, leads to an additional term in the Hamiltonian

$$
H^{\prime}=-\vec{\mu} \cdot \vec{B}=V(r)\left(\vec{L} \cdot \overrightarrow{s_{n}}\right)
$$

where $V(r) \propto \frac{1}{r^{3}}$.
(b) For $n p$ system, total angular momentum is $\vec{J} \equiv \vec{L}+\overrightarrow{s_{n}}+\overrightarrow{s_{p}}$, where $\overrightarrow{s_{n}}$ and $\overrightarrow{s_{p}}$ are spins of neutron and proton.

$$
\left[H^{\prime}, \vec{J}\right]=0 \Rightarrow\left(j, m_{j}\right) \text { are constants of motion. }
$$

(c) For unperturbed Hamiltonian, the states are labelled by $\left|j, m_{j} ; l ; s\right\rangle$. We want to express these states in terms of eigenstates of $\vec{L} \cdot \overrightarrow{s_{n}}$. Let's define a new 'semi-total' angular momentum

$$
\overrightarrow{J^{\prime}} \equiv \vec{L}+\overrightarrow{s_{n}}
$$

with eigenstates $\left|j^{\prime}, m_{j}^{\prime}\right\rangle$ such that $\left|\overrightarrow{J^{\prime}}\right|^{2}\left|j^{\prime}, m_{j}^{\prime}\right\rangle=j^{\prime}\left(j^{\prime}+1\right)\left|j^{\prime}, m_{j}^{\prime}\right\rangle$. Then $\left|j^{\prime}, m_{j}^{\prime}\right\rangle$ are also eigenstates of $\vec{L} \cdot \overrightarrow{s_{n}}=\frac{1}{2}\left(\left|\overrightarrow{J^{\prime}}\right|^{2}-|\vec{L}|^{2}-\left|\overrightarrow{n_{n}}\right|^{2}\right)$. We need to write in a new basis

$$
\begin{aligned}
\left|j, m_{j} ; l ; s\right\rangle= & x_{1}\left|j^{\prime}=j+\frac{1}{2}, m_{j}^{\prime}=m_{j}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle_{p} \\
& +x_{2}\left|j^{\prime}=j+\frac{1}{2}, m_{j}^{\prime}=m_{j}+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{p} \\
& +x_{3}\left|j^{\prime}=j-\frac{1}{2}, m_{j}^{\prime}=m_{j}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle_{p} \\
& +x_{4}\left|j^{\prime}=j-\frac{1}{2}, m_{j}^{\prime}=m_{j}+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{p}
\end{aligned}
$$

where $x_{i}(j, l, s)$ are Clebsch-Gordan coefficients (functions of $\left.j, l, s\right)$ and $\left|\frac{1}{2}, m_{s_{p}}\right\rangle_{p}$ denote proton spin states.
The unperturbed states are degenerate in m_{j}. Since $\left[\vec{J}, \vec{L} \cdot \overrightarrow{s_{n}}\right]=0, H^{\prime}$ will not mix states of definite $\left(j, m_{j}\right)$.

To lowest order in perturbation theory, the shift in energy is

$$
\begin{aligned}
\Delta E & =V(r)\left\langle j, m_{j} ; l ; s\right| \vec{L} \cdot \overrightarrow{s_{n}}\left|j, m_{j} ; l ; s\right\rangle \\
& =\frac{1}{2} V(r) \sum_{i=1}^{4}\left(\left|x_{i}(j, l, s)\right|^{2}\left(j^{\prime}\left(j^{\prime}+1\right)-l(l+1)-\frac{3}{4}\right)\right) \\
& =\frac{1}{2} V(r)\left(\left(j(j+2)-l(l+1)-(2 j+2)\left(\left|x_{3}\right|^{2}+\left|x_{4}\right|^{2}\right)\right)\right.
\end{aligned}
$$

where in the last line we used the equation above to plug in for j^{\prime} and simplified the expression using the fact that $\sum_{i=1}^{4}\left|x_{i}(j, l, s)\right|^{2}=1$. For example, for deuteron $(j=1, l=0, s=1)$:
$\left|j=1, m_{j} ; l=0 ; s=1\right\rangle=\left\{\begin{array}{l}\left|j^{\prime}=\frac{1}{2}, m_{j}^{\prime}=\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle_{p} \text { for } m_{j}=1 \\ \frac{1}{\sqrt{2}}\left(\left|j^{\prime}=\frac{1}{2}, m_{j}^{\prime}=-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle_{p}\right. \\ \left.+\left|j^{\prime}=\frac{1}{2}, m_{j}^{\prime}=\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{p}\right) \text { for } m_{j}=0 \\ \left|j^{\prime}=\frac{1}{2}, m_{j}^{\prime}=-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle_{p} \text { for } m_{j}=-1\end{array}\right.$
For deuteron, $\left\langle\vec{L} \cdot \overrightarrow{s_{n}}\right\rangle=\frac{1}{2}\left(j^{\prime}\left(j^{\prime}+1\right)-l(l+1)-\frac{3}{4}\right)=0$ for $l=0$, so no shift in binding energy (may be some shift due to $l=2$ component in wavefunction).
(d) Outside of range of nuclear forces, the perturbation Hamiltonian will favor configurations in which neutron spin is aligned with proton's magnetic field.

