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Ph 203. Solution HW #3

Scattering at 6 = 90°

Recall that 92 = | f(6)|?, where

i(Zl + 1)e sin(8;) Py(cos ).

=0

T =

f(0) =

Since F;(0) = 0 for [ odd, scattering only occurs for even [ at 6 = 7.
Next, pp is symmetric under isospin, but must be in a totally antisym-
metric state:

s =0 (antisymm) — | = even (symm)
s =1 (symm) — [ = odd (antisymm).

= (j%)e:z is only non-zero for pp in s = 0 state.

2
On the other hand, np can be in isosinglet or isotriplet state, so the

cross-section at 0 = g is non-zero for both s =0 and s = 1.

For unpolarized scattering, average over initial polarisations of incom-

ing particles
()., - 1)
dQ Jo=z 4\ dQ Jo=z

n do,, do!,
(d((ijﬂp)a:g - z}l( ;Qp>9:g + Z(%)e:g’

where superscripts s and ¢ denote spin singlet and triplet, respectively.
Assuming charge independence of the nuclear force

do? do}
(%)6% - ( ;9”)9%

do
and ( ”p) > 0, we have
0=2

dQ
() = (s
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Angular momentum and parity of deuteron.

Suppose the deuteron was JZ = 0.

P=—-1=1[=odd,

J=0=S=1and L =1,

S =1 is symmetric and L = 1 is antisymmetric = [ = 1 (symmetric).

In summary S = 1,L =1 and I = 1. If this was the ground state, it
would imply the existence of a large term al - S (with @ > 0) in the
Hamiltonian. (L-S o j(j+1)—I(I+1) — s(s+1), lowering the energy
when L is anti-aligned with S.)

This term must be large enough to overcome the centrifugal potential
term that disfavours a ground state with [ # 0.

Strong interaction processes

7 +p— K+ A°
7' 4+n— KO+ A°

LHS has I3 = —3, with m having total I = 1 (triplet) and n/p belonging
to [ = % doublet.

= K% has (I,I;) = (3, —3) or (3,-1).

The latter possibility can be ruled out since there is no K7 state (i.e.
no (2, 2)) or by the fact that 7~ +n — K~ + A® does not occur (as it
would if K~ = (3,-2)).

Therefore K has (I,13) = (3, —3)-
Using Clebsch-Gordan coefficients,

1 141 1 2
17_1;_7_‘_7__ = - o
2°2127 2 3
1 131 1 1
1a0;_7__ a' A = - o
27 2127 2 3
o(r p— K°A%) 2 9
o(mon — KOA?) — &
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Tensor operators
First, let’s consider how to decompose a dyadic tensor (a two-component
tensor formed from two cartesian vectors, e.g. T;; = w;v;) in terms of
irreducible spherical tensors.

Uu-v U;V; — UiV, UV; + U0, U
iy = wivy = =50y o = (B - ),
where the first term is the j = 0 scalar part, the second term the j =1
vector part and the third is j = 2 tensor part.

Therefore we can write (7 = 7/r is a unit vector)

G = 3<01¢02j t 0102  01-02 > (f’z’f’j + 7T _ r- 725”>
2 2 3 v 2 3 )
so that Si» is a scalar operator that can be written as a product of two
J = 2 irreducible tensor operators.
Recall that from two spherical tensors BZ“, C’;-;LQ we can construct
another spherical tensor

At = Z <j1,m1;j2;m2|jam>Bg?lc;2n2’

myi, m2

where (1, mq; j2, ma|7, m) are the Clebsch-Gordan coefficients. Hence
we have for a scalar

S12=3 ) (2,m1;2,m[0,0) (0100) 1Ly (FF) 12,

mi, m2

=3 Z (2,m;2, —m|0,0) (0102) 7" _y (F7) 7.

Lastly, need to relate (77)5" to spherical harmonics Y;"(6, ¢), where
7 = (sin @ cos ¢, sin 0 sin ¢, cos ).
For T;; = u;v;, the spherical tensors 77" are:

u-v 1
T(? = N = g(uﬂv,l + u_1v41 — UgUy)

(u x o)™

T =
1 Z\/§



+2
T2 = U41V+1

_ Ux1Up + UV

T:I:l —
? V2
1

T20 = %(U—HU—I + U—_1V41 -+ QUQUQ),
where uy = u., u+1 = F(u, +iu,)/v/21s the j = 1(m = 0, 41) spherical
decomposition of a vector 4 = (uy, u,, u,) (see for example Sakurai Ch.
3.10).
Plugging in, we get for example

. L, Ty + 7y o 1 8
(1)) = (gt +20) = Ze(Beos” 6 = 1) =4 [ 72¥7(6.9),
and so on. Hence (77)5 = /32Y5"(0, ¢). Therefore we have

~ 2477' mys—m
512 =1/ sz: (2,m,2,—m[0,0> (0102)2 }/2 (97¢>

Infinite vs finite range force
Infinite range
Poisson equation: V2¢(F) = —4med®(r). In momentum space

o17) = [ oot

the equation becomes

3 ~ - 3 J—
/(;lﬁz;aﬁb(@(—ﬁ)e_’p'r = —47T6/ d’p e P




Now, integrate

d3p d*p 4me

¢®:/ )@@ew—/@ﬂp
_ ¢ /dpp /d@smg e
R

e [ e T e, . e
= — dp = —(—Zﬂ') = -,
™ J_o P mr r

—ip

using contour integration.

Finite range
1 S ,
(V2 = =)o) = 4mg0*(7)

0
Repeating the steps above we obtain

—drg —4mg
Ptz e -5)

To

¢ =

Integrating in the complex plane as before
d3p dp —4rg _..-
r) = 77,]) i — e p-T
0= | o = | s

g o'} p2 e—ipr _ ezpr
Th PP+ —ipr

To

e—r/ro

=g

,

Lastly,virtual particle of energy E can be created for time dt, as long

as B0t ~ I = 1 (in our units). E ~ mc® and 6t ~ ry/c, therefore
ro ~ cdt ~ he/E ~ h/me.
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Bertulani 3.11.
(a) Interaction of the neutron magnetic moment with the Coulomb
field of the proton, for nonrelativistic relative np motion, leads to an
additional term in the Hamiltonian

H =—ji-B=V(r)(L-s;),

where V (r) oc 5.
(b) For np system, total angular momentum is J=L+s, + Sp, where
s, and s, are spins of neutron and proton.

[H',J] = 0= (j,m;) are constants of motion.

(c) For unperturbed Hamiltonian, the states are labelled bylj, m;;l;s).

We want to express these states in terms of eigenstates of L - s,. Let’s
define a new ‘semi-total’ angular momentum

j’zfj—l—s},

with eigenstates ‘j’,m3~> such that [.J/|2 |j’,m9> =70 +1 ‘j’,m;>.
Then |j',m/) are also eigenstates of L-s, = (] —|L)> = |s,]%). We
need to write in a new basis

. . o1 1 11
7, my; 1y s) =x4 J'—J+§,m}—mj——>®‘ >
p

2/ 7122
+ To j’:j—l—l,m'- mj+1>® 1,—1>
27 2 2" 2/,
+x3j’:j—1,m»:mj—l>®l,l>
277 2 2°2/,
+ 24 j':j—l,m'»:mj+l>® 17_1> ,
27 2 20 2/,

where z;(7, 1, s) are Clebsch-Gordan coefficients (functions of j,, s) and
%, M, >p denote proton spin states.

The unperturbed states are degenerate in m;. Since [f, L. sn] =0, H'
will not mix states of definite (j, m;).




To lowest order in perturbation theory, the shift in energy is

AE =V (r) (j,m; l;s| L - s5 15, my: 1; 5)
4

=V S (ImG L PG + )~ 1+ 1) - )

° 4
=1

1 . .
= SV (G0 +2) =10+ 1) = (25 +2) (Jzef* + |oa]?) ).
where in the last line we used the equation above to plug in for j’ and
simplified the expression using the fact that Zle lz;(5,1,8)]* = 1. For
example, for deuteron (j =1,1=0,s =1):

1
j=1myul=0s=1)={ Y2\
+

For deuteron, <E : 5‘,’L> =2/’ +1)—ll+1)=3)=0for I =0, so
no shift in binding energy (may be some shift due to | = 2 component
in wavefunction).

(d) Outside of range of nuclear forces, the perturbation Hamiltonian
will favor configurations in which neutron spin is aligned with proton’s
magnetic field.



