PH 203 HW 8

- 1. Bhaduri 3.1
- 2. Bertulani 12.1
- 3. Bertulani 12.3
- 4. Bertulani 12.8
- 5. Bertulanti 12.9

Exercise 3.1

Use the nonrelativitic quark-model to calculate the magnetic susceptibility of a proton. Use perturbation theory. With a uniform magnetic field B in the z-direction, the perturbing Hamiltonian is $\mathcal{H}_{\rm int} = -\mu_z B + (e^2/8m_c)(x^2+y^2)B^2$, and $\mu_z = \sum_q (e_q/2m_c)\sigma_z$, where m_c is the constituent quark mass. We have taken $\mathbf{A} = \frac{1}{2}(\mathbf{B} \times \mathbf{r})$. The first term, taken to second order, gives a paramagnetic contribution. The diagonal matrix-element of the second term is diamagnetic. Show that the proton magnetic susceptibility χ_p is given by

$$4\pi\chi_P = \frac{2\mu_{P\Delta}^2}{(E_\Delta-E_N)} - \frac{e^2}{6m_c} \langle r^2 \rangle_P \ . \label{eq:epsilon}$$

- Here $\mu_{P\Delta}=\langle P|\mu_z|\Delta\rangle=2\sqrt{2/3}\,\mu_P,\,\mu_P$ being the magnetic moment of the proton. Transitions to states other than $\Delta(1230)$ are ignored because of negligible spatial overlap with the ground state. Take $m_c=336\,\mathrm{MeV},$ $\langle r^2\rangle_P^{1/2}=0.86\,\mathrm{fm},\,\mathrm{and}\,E_\Delta-E_N=300\,\mathrm{MeV}.$ Show that $\chi_P\approx2\times10^{-4}\,\mathrm{fm}^{+3}.$ How do you think it can be measured? In the literature, χ_P is also called the magnetic polarizability and denoted by $\bar{\beta}$. The corresponding response function for the electric field is termed electric polarizability and denoted by $\bar{\alpha}$ (see Exercise 5.11).
- 1. (a) What is the most probable kinetic energy of a hydrogen atom at the interior of the sun $(T = 1.5 \times 10^7 \text{ K})$? (b) What fraction of these particles would have kinetic energy in excess of 100 keV?
- 3. About 3 s after the onset of the Big Bang, the neutron-proton ratio became frozen when the temperature was still as high as 10^{10} K ($kT \simeq 0.8$ MeV). About 250 s later, fusion reactions took place converting neutrons and protons into ⁴He nuclei. Show that the resulting ratio of the masses of hydrogen and helium in the universe was close to 3. The neutron half-life = 10.24 min and the neutron-proton mass difference is 1.29 MeV.
- **8.** Given that the sun was originally composed of 71% hydrogen by weight and assuming it has generated energy at its present rate (3.86 \times 10²⁶ W) for about 5 \times 10⁹ years by converting hydrogen into helium, estimate the time it will take to burn 10% of its remaining hydrogen. Take the energy release per helium nucleus created to be 26 MeV.
- 9. The CNO cycle that may contribute to energy production in stars similar to the sun begins with the reaction p + $^{12}C \rightarrow ^{13}N + \gamma$. Assuming the temperature near the center of the sun to be 15 \times 10⁶ K, find the peak energy and width of the reaction rate.