Ph203. Solution HW \#8

1.) Bhaduri 3.1

Using perturbation theory, in terms of energy shift ΔE, magnetic susceptibility χ_{p} in cgs units is defined as

$$
\Delta E=-\frac{1}{2} 4 \pi \chi B^{2}
$$

where B is the magnetic field.
Following the hint, the paramagnetic contribution is given by the second order shift of the proton state due to $\mathcal{H}_{1}^{\text {int }}=-\mu_{z} B$

$$
\Delta E^{(2)}=\sum_{k} \frac{\left.\left|\langle k| \mathcal{H}_{1}^{\text {int }}\right| P\right\rangle\left.\right|^{2}}{E_{P}-E_{k}} \approx \frac{|\langle\Delta| \mu| P\rangle\left.\right|^{2} B^{2}}{E_{P}-E_{\Delta}}=-\frac{\mu_{P \Delta}^{2} B^{2}}{E_{\Delta}-E_{P}} .
$$

The dimagnetic contribution $\mathcal{H}_{2}^{\text {int }}=\frac{e^{2}}{8 m_{c}}\left(x^{2}+y^{2}\right) B^{2}$ corresponds to energy shift

$$
\Delta E=\langle P| \mathcal{H}_{2}^{\text {int }}|P\rangle=\frac{e^{2}}{8 m_{c}}\left(\left\langle x^{2}\right\rangle_{P}+\left\langle y^{2}\right\rangle_{P}\right) B^{2}=\frac{e^{2}}{8 m_{c}} \frac{2}{3}\left\langle r^{2}\right\rangle_{P} B^{2}
$$

where we used spherical symmetry of the ground state. Putting all together, we have

$$
4 \pi \chi_{P}=\frac{2 \mu_{P \Delta}^{2}}{E_{\Delta}-E_{P}}-\frac{e^{2}}{6 m_{c}}\left\langle r^{2}\right\rangle_{P}
$$

as required.
2.) Bertulani 12.1
(a) The most probable kinetic energy of a hydrogen atom at the interior of the sun is given by the peak of the Maxwell-Boltzmann distribution $\propto \sqrt{E} \exp (-E / k T) d E$ at $T=1.5 \times 10^{7} \mathrm{~K}$

$$
\Rightarrow E_{\max }=\frac{1}{2} k T \approx 0.65 \mathrm{keV}
$$

(or use eq. 12.14 in Bertulani.)
(b) Fraction of the particles with energies higher than 100 keV is given by $\left(T=1.5 \times 10^{7}\right)$

$$
F(E>100 \mathrm{keV})=\frac{\int_{100 \mathrm{keV}}^{\infty} \sqrt{E} \exp (-E / k T) d E}{\int_{0}^{\infty} \sqrt{E} \exp (-E / k T) d E} \approx 10^{-33}
$$

3.) Bertulani 12.3

At $k T=0.8 \mathrm{MeV}$, the neutron-proton ratio is given by

$$
R_{0}=\frac{N_{n}}{N_{p}}=\mathrm{e}^{-\Delta m_{n p} / k T}=\mathrm{e}^{-1.29 / 0.8}
$$

Nutrons decay with half-life $t_{1 / 2}=10.24 \mathrm{~min}$, so after 247 seconds the number of neutrons is $N_{n}^{\prime}=\left(\frac{1}{2}\right)^{t / t_{1 / 2}} N_{n}$. The neutron-proton ratio becomes

$$
R=\frac{N_{n}^{\prime}}{N_{p}^{\prime}}=\frac{N_{n}^{\prime}}{N_{p}+\left(N_{n}-N_{n}^{\prime}\right)} \approx 0.15
$$

Assuming there were no free neutrons left over after the fusion phase, we can estimate

$$
\frac{m(\mathrm{H})}{m(\mathrm{He})}=\frac{N_{p}^{\prime}-N_{n}^{\prime}}{4\left(\frac{N_{n}^{\prime}}{2}\right)}=\frac{1-R}{2 R}=2.82 \approx 3
$$

4.) Bertulani 12.8

Mass available for burning: $M_{0}=0.71 \times 1.99 \times 10^{30} \mathrm{~kg}=1.41 \times 10^{30}$ kg .
Energy release per mass ratio: $\eta=\frac{26 \mathrm{MeV}}{4 m_{p}[\mathrm{~kg}]}$.
Mass of the hydrogen now: $M=M_{0}-\frac{P t_{0}}{\eta}$, where $P=3.86 \times 10^{26}$ W (note the typo in the textbook) and $t_{0}=5 \times 10^{9}$ years. Hence the time to burn 10% of the remaining hydrogen is $t=\frac{0.1 \eta M}{P}$. Plugging in numbers in consistent units yields $t=7 \times 10^{9}$ years.
5.) Bertulani 12.9

Note that $p+{ }^{12} \mathrm{C} \rightarrow{ }^{13} \mathrm{~N}+\gamma$ has resonances, which we are not considering here. The Gamov peak and width are given by eq. 12.19 and 12.20 in Bertulani. At $T=15 \times 10^{6} \mathrm{~K}$, we have ($Z_{1}=1, Z_{2}=6, \mu=12 / 13$)

$$
\begin{aligned}
& E_{0}=\left(\frac{b k T}{2}\right)^{\frac{2}{3}}=23.8 \mathrm{keV} \\
& \Delta=4 \sqrt{\frac{k T E_{0}}{3}}=12.8 \mathrm{keV}
\end{aligned}
$$

