Homework Set #1

*Problem 1.5 Consider the wave function

$$\Psi(x,t) = Ae^{-\lambda|x|}e^{-i\omega t},$$

where A, λ , and ω are positive real constants. (We'll see in Chapter 2 what potential (V) actually produces such a wave function.)

- (a) Normalize Ψ .
- (b) Determine the expectation values of x and x^2 .
- (c) Find the standard deviation of x. Sketch the graph of $|\Psi|^2$, as a function of x, and mark the points $(\langle x \rangle + \sigma)$ and $(\langle x \rangle \sigma)$, to illustrate the sense in which σ represents the "spread" in x. What is the probability that the particle would be found outside this range?

*Problem 1.7 Calculate $d\langle p \rangle / dt$. Answer:

$$\frac{d\langle p\rangle}{dt} = \left\langle -\frac{\partial V}{\partial x} \right\rangle. \tag{1.38}$$

Equations 1.32 (or the first part of 1.33) and 1.38 are instances of **Ehrenfest's theorem**, which tells us that *expectation values obey classical laws*.

See Addtional Problem on Next Page

Problem 1.17 A particle is represented (at time t = 0) by the wave function

$$\Psi(x,0) = \begin{cases} A(a^2 - x^2), & \text{if } -a \le x \le +a, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Determine the normalization constant A.
- (b) What is the expectation value of x (at time t = 0)?
- (c) What is the expectation value of p (at time t=0)? (Note that you cannot get it from $p=md\langle x\rangle/dt$. Why not?)
- (d) Find the expectation value of x^2 .
- (e) Find the expectation value of p^2 .
- (f) Find the uncertainty in x (σ_x).
- (g) Find the uncertainty in $p(\sigma_p)$.
- (h) Check that your results are consistent with the uncertainty principle.