Phys. 2b 2025, Lecture Notes (Lect. 3 & 4) (1/14-16/2025)

Key Concepts
1. Solving Schrédinger’s Eq & Stationary States
2. Solutions to Infinite Well Potential

Recall:
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Since p = ih—, we get p* = —h?’=—, and the first term on the right becomes p—@/} =T,
Ox Ox? 2m

where T is the kinetic energy operator. Thus Schrodinger’s Eq becomes:

(1)

Where H is called the Hamiltonian or total energy operator.

How to solve it?
Can solve the full Schrodinger Equation (ihaa—lf = H7) easily for a special case:

if H is not an explicit function of time - i.e. V V(t).

To do this, we assume separable solns exist, namely W, (z,t) = ¥, (x)d,(t) (see text).
Plugging this in Schrédinger Eq. leads to two separate differential equations (one
time-dependent and one x-dependent. Thus both must be equal to a constant (= E,,).
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First equation clearly has exponential soln:

iEnt

Pn(t) =e 1
and second equation is the called the Time-Independent Schrodinger Equation and is also
an Eigenvalue Equation:

wn = n¢n
where 1), is an eigenfunction on eigenstate and FE,, is an eigenvalue or eigenenergy.
Note:

1. In some cases F,, are discrete due to Boundary Conditions
2. In other cases E, are continuous if no Boundary Conditions
3. These solutions U, (z,t) are called stationary states since W*W = f(x) # g(t).

4. These solns form a ”complete set” (see Ch3) i.e. any arbitrary soln is a superposition of
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Un oy, via ¥(x,t) = g Cnn(x)e™ i , where ¢,, are constants.
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EXAMPLE I: Infinite Square Well
Particle of mass m confined in an infinite 1-d potential

V(iz)=0;0<z<a
V(z)=00; <0, 2>a

Find: E,, ¢, () by solving Hy, = E,i,, with
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H = o0 forx <0, z>a
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For a particle with finite energy, we must have 1, = 0 for x > a and for z < 0.
In addition, for 0 < & < a we need to solve a simple diff. eq.:

—h d*iy,
—_— = E, 0,
2m dxz? v

d*1,, —2mkE, 9 _ ,  2mb,
= ok ( 2 ) Yy, = =k, with k;, = 2

.. the general solution is ¢, (z) = Asin (k,z) + B cos (k,z)

= but we must also satisfy the “Boundary Conditions”: ,(0) = ¢, (a) = 0.

This implies that B = 0 and Asin(k,a) = 0 which leads to
kna =nm, n=1,2,.... Note: n = 0 not useful since then ¥*¢) = 0 so no particle in the box.

Thus we find:

n?m?h?

2ma?

E, = forn=1,2,3,...

These are the energies of the eigenstates for a particle in a box.

2mE,
72

Substituting this form for &, = in the general solution we get for the eigenstates:

nmx >

p(x) = Asin <—
a
Note: minimum energy for particle has £ > 0 (mmm... interesting = zero-point energy).

What about the value of A? — can use Normalization of probability:
This requires that [°°_¢*idz = 1. Thus

1= /O | A2 sin? (”%x) dr = | A? (g)

since



A= \/g; “up to an overall phase” = ie., A = %em is also OK since A*A = %,

but this overall phase a can’t make any difference to what we measure (i.e. the probability
density) so for “convenience” we choose a = 0. (Note: Relative phases in a superpostion are
VERY important - see later).

Thus

Yn(z) = ﬂsm(%), n=123,...

These are the eigenstates (aka stationary states or energy eigenfunctions) for a particle in box
Some pictures of these states:
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We can define average values (aka “expectation values”) for observables like average position
< z > and average momentum < p, > via e.g.

< Pu >:/ WV ppdr

then for these stationary states we have:

(z) = § for all n. Is this obvious?

(p) = 0 for all n since [} sin (22£) cos (“22) dz = 0

a a



Key Concepts
1. Overview of Schrédinger Eq Solns when H # f(t)
2. Quantum Simple Harmonic Oscillator (QSHO)

Last time we solved Infinite Square Well
Note:

1. For eigenstates of infinte well what about n >>> 17 In general ¥ (x)1,(z) will have n
maxima and probability of finding the particle is ~ uniform inside the box, ~ classical

E.g. n =50:

0 I
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This is example of Bohr’s Correspondence Principle = Bohr’s C.P.

’ Quantum systems behave like classical systems when n >> 1 and & is unimportant or absent

Consider 10 gram mass in 7 cm box with v ~ 10 cm/s

1 n?m2h?

E = —mv* ~5-107° joules ~ = n~10%
2 ma?

2. The energy spectrum for the infinite square well: — 16E1
Now if n >>> 1, the energies should be nearly oE 1

E _ _

continuous (classical) according to Bohr’s

Correspondence Principle. 4E1
—_  E.l

But apparently the level spacing is increasing Increasing energy level

spacing

as n increases:

= AE,=F, . —E,=[(n+1)?-nE = (2n+1)E,

What’s up?... Actually fractional energy spacing: AE]i" = (% + n%) =0if n>>1

Thus the level spacing is a tiny tiny fraction of the energy value - way below the

ability to resolve discrete lines experimentally.



3. 1Y, are discrete, infinite set of functions — can be used to represent any function that
satisfies f(0) = f(a) = 0 = Fourier’s Theorem.

4. Superposition state is not a stationary state:

Let’s look at time evolution [W*(z,t)W(x,t)] for a state that is a superposition of the first
three eigenstates of the infinite square well. In particular:

—itE —itEy —itEy

U(x,t) =cripre” 7+ cothge™ b 4 cyihge k
with ¢; = 0.648, ¢ = 0.648, c3 = 0.40. See video demo on webpage link.
Where does this weird behavior come from?? — consider simple superposition of ¢y & s:

with 21 = 2, 25 = 222 and W(z,t) = sin(z;)e PV + sin(zy)e 7 F20/0,

Then probability distribution of finding particle at x (prob. density) is given by:
U = sin?(x1) + sin®(xs) + sin(xy)sin(zy)e " EmEOVE L gin () sin(z,)eE2=EIR

= sin?(x1) + sin®(xzq) + 2sin(x1)sin(xs)cos[(Ey — E1)t/h]
and we get an extra time-dependent term [since 2cos(u) = e™ + e¢~™]. Of course this
time-dependent term vanishes when we integrate over x because sin(x1) and sin(xs) are
orthogonal.
Summary of stationary state solns. for H
For H # H(t), eigenstates of H are stationary states and can form a complete set of

orthonormal functions. ”Normal” means normalized, ”ortho” means orthogonal (see below).

Now recalling that an arbitrary solution of Schrédinger’s Eq can be written:

__iEnt

U(x,t) = chwn(x)e T

we can show that / U™ (z, t)W(x, t)dx = 1:

oo
This is a product of sums, each with co # of terms - - -
Picking some specific terms to calculate:

/ U (2, ) U (z, t)da _/ [Ciw]ﬁjeiElt/h ClwlefiElt/h el TeiE&t/h C2w2€7iE2t/h 4. } dx
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But normalization gives / Yirde = 1 while orthogonality gives / Yiadr =0



Thus all of the cross terms vanish leaving us with:

/ U (2, )T (2, t)de =Y e, =1

Overall we have developed a general path to solving Quantum Problems:

1. Solve H n = Ent), (ie. find the eigenstates v, and associated eigenenergies FE,, of H )

2. Given arbitrary initial state W(z,0), express this in terms of a superposition of eigenstates
U, e.g. ¥(x,0) = > aph,(x) — we'll see how this is always possible next week

3. Use(z,t) = e#\lf(x, 0) to evolve wavefunction in time. Thus: W(z,t) = > ¢ 1, (x)e Ent/h

1D Quantum Simple Harmonic Oscillator (QSHO):

e Any V(z) with a minimum looks like . .
a SHO, at least near the minimum .

V) =12kx 2 /
e [t’s a useful 1st guess for bound systems \ N

(e.g., p,n in nucleus, quarks in p,n)

e It almost looks like square well except that

Y

V' — oo only when z — 400

.. particle in SHO can have finite probability all the way to x — o0

For Quantum Mechanics Solution = find Energy eigenvalues and eigenfunctions!

Given the Hamiltonian:

~2
& Pz 1 ~2
H ==+ -k
SHO = 5~ + 5 x
then the Eigenvalue Equation is:
=R &Py (x)

. k
H = —2? =F
SHO¢n(x) m dr? + 21: ¢n($) nqvbn(x)
The E, are discrete because the solutions must be bounded (since V' — oo as x — +00).

Now let wy = \/g and £ = /T2, then (dr)® = I-(d¢)? and the Differential
Equation becomes:

—h? rmwgy P, (§)  mw? [ h
2m<h) de? N 2 <mw0

simplifying:



2
d ng) + hwo€™n(€) = 2Entn(€)

rewriting gives our final, simple, Diff. Eq:

Lo _ (¢35 ) wn

—th

dg? Fiwo
= Likewise we can “guess” an approximate solution if z — 0 (e.g. £ — 0)
>ty

which simplifies the Diff Eq to: e = — K%, (¢)

which has the soln., for K = constant: 1, = sin(K¢) or cos(K¢).
= Likewise we can “guess” an approximate solution if z — oo

d
which simplifies the Diff Eq to: — =
which has the soln.: ¢, = e /2.

How do we know this works? = Check it! ---

8 () = & ) - & (o) < g e

= (&-1) e &/~ 26782 = 2y, since & — 0o Q.E.D.

Thus we can guess that the stationary states (energy eigenstates) are
standing waves (e.g. sin/cos) near the origin that vanish as |z| — oc:
V(x)

A

V(X) = 1/2 kx2
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Now, from the text which does all of the Math, we can write the exact solns
for both the eigenstates and energy eigenvalues:

(w41 =& . _
(&) = ( — > mHn(f)e ,with n=20,1,2,...



where H, () are the so-called Hermite Polynomials (see text) with e.g.
HO == 1,H1 == 25,[‘[2 == 452 - 2,
— They are a complete set of orthogonal functions well-known to mathematicians.

And finally the energy eigenvalues are A
E,=(n+ $)hwy, n=0,1,2,...

and the spectrum of energies is uniform E 5w, /2
(e.g. energy spacing is equal) - see Figure = 30,12
with AFE, = E,,1 — E, = hwg ! o /2

Equally spaced energy levels



