
Phys. 2b 2025, Lecture Notes (Lect. 3 & 4) (1/14-16/2025)

Key Concepts
1. Solving Schrödinger’s Eq & Stationary States
2. Solutions to Infinite Well Potential

Recall:

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ V ψ

Since p̂ = iℏ
∂

∂x
, we get p̂2 = −ℏ2

∂2

∂x2
, and the first term on the right becomes

p̂2

2m
ψ = T̂ψ,

where T̂ is the kinetic energy operator. Thus Schrodinger’s Eq becomes:

iℏ
∂ψ

∂t
=

(
T̂ + V̂

)
ψ = Ĥψ

Where Ĥ is called the Hamiltonian or total energy operator.

How to solve it?
Can solve the full Schrödinger Equation (iℏ∂ψ

∂t
= Ĥψ) easily for a special case:

if Ĥ is not an explicit function of time - i.e. V̂ ̸= V (t).

To do this, we assume separable solns exist, namely Ψn(x, t) = ψn(x)ϕn(t) (see text).
Plugging this in Schrödinger Eq. leads to two separate differential equations (one
time-dependent and one x-dependent. Thus both must be equal to a constant (≡ En).

→ iℏ
1

ϕn

∂ϕn
∂t

= En, and
1

ψn
Ĥψn = En

First equation clearly has exponential soln:

ϕn(t) = e−
iEnt

ℏ

and second equation is the called the Time-Independent Schrödinger Equation and is also
an Eigenvalue Equation:

Ĥψn = Enψn

where ψn is an eigenfunction on eigenstate and En is an eigenvalue or eigenenergy.

Note:

1. In some cases En are discrete due to Boundary Conditions

2. In other cases En are continuous if no Boundary Conditions

3. These solutions Ψn(x, t) are called stationary states since Ψ∗Ψ = f(x) ̸= g(t).

4. These solns form a ”complete set” (see Ch3) i.e. any arbitrary soln is a superposition of

ψnϕn via Ψ(x, t) =
∞∑
1

cnψn(x)e
− iEnt

ℏ , where cn are constants.
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EXAMPLE I: Infinite Square Well

Particle of mass m confined in an infinite 1-d potential

V (x) = 0; 0 < x < a

V (x) = ∞; x ≤ 0, x ≥ a

Find: En, ψn(x) by solving Ĥψn = Enψn, with

Ĥ =
p̂2x
2m

=
−ℏ2

2m

d2

dx2
for 0 < x < a

Ĥ = ∞ for x ≤ 0, x ≥ a

xa0

V
(x
)

For a particle with finite energy, we must have ψn = 0 for x ≥ a and for x ≤ 0.
In addition, for 0 < x < a we need to solve a simple diff. eq.:

−ℏ2

2m

d2ψn
dx2

= Enψn

⇒ d2ψn
dx2

=

(
−2mEn

ℏ2

)
ψn = −k2nψn with k2n =

2mEn
ℏ2

∴ the general solution is ψn(x) = A sin (knx) +B cos (knx)

⇒ but we must also satisfy the “Boundary Conditions”: ψn(0) = ψn(a) = 0.

This implies that B = 0 and A sin(kna) = 0 which leads to
kna = nπ, n = 1, 2, . . . . Note: n = 0 not useful since then ψ∗ψ = 0 so no particle in the box.

Thus we find:

En =
n2π2ℏ2

2ma2
for n = 1, 2, 3, . . .

These are the energies of the eigenstates for a particle in a box.

Substituting this form for kn =
√

2mEn

ℏ2 in the general solution we get for the eigenstates:

ψn(x) = A sin
(nπx

a

)
Note: minimum energy for particle has E > 0 (mmm... interesting = zero-point energy).

What about the value of A? → can use Normalization of probability:
This requires that

∫∞
−∞ ψ∗ψdx = 1. Thus

1 =

∫ a

0

|A|2 sin2
(nπx

a

)
dx = |A|2

(a
2

)
since ∫ nπ

0

sin2(u)du =
nπ

2
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∴ A =
√

2
a
; “up to an overall phase” ⇒ i.e., A =

√
2
a
eiα is also OK since A∗A = 2

a
,

but this overall phase α can’t make any difference to what we measure (i.e. the probability
density) so for “convenience” we choose α = 0. (Note: Relative phases in a superpostion are
VERY important - see later).
Thus

ψn(x) =
√

2
a
sin

(
nπx
a

)
, n = 1, 2, 3, . . .

These are the eigenstates (aka stationary states or energy eigenfunctions) for a particle in box
Some pictures of these states:

We can define average values (aka “expectation values”) for observables like average position
< x > and average momentum < px > via e.g.

< px >=

∫ ∞

−∞
ψ∗p̂xψdx

then for these stationary states we have:

⟨x⟩ = a
2
for all n. Is this obvious?

⟨p⟩ = 0 for all n since
∫ a
0
sin

(
nπx
a

)
cos

(
nπx
a

)
dx = 0
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Key Concepts
1. Overview of Schrödinger Eq Solns when Ĥ ̸= f(t)
2. Quantum Simple Harmonic Oscillator (QSHO)

Last time we solved Infinite Square Well

Note:

1. For eigenstates of infinte well what about n >>> 1? In general ψ∗
n(x)ψn(x) will have n

maxima and probability of finding the particle is ≃ uniform inside the box, ≃ classical

E.g. n = 50:

2 2
22

22
2222

50
50

This is example of Bohr’s Correspondence Principle = Bohr’s C.P.

Quantum systems behave like classical systems when n >> 1 and ℏ is unimportant or absent

Consider 10 gram mass in 7 cm box with v ∼ 10 cm/s

E =
1

2
mv2 ≃ 5 · 10−5 joules ≃ n2π2ℏ2

2ma2
⇒ n ≃ 1029

2. The energy spectrum for the infinite square well:

E_1

E_1

E_1

E

Increasing energy level 
spacing

. .
 . 

.

4

99

16

9 E_1
Now if n >>> 1, the energies should be nearly

continuous (classical) according to Bohr’s

Correspondence Principle.

But apparently the level spacing is increasing

as n increases:

⇒ ∆En = En+1 − En = [(n+ 1)2 − n2]E1 = (2n+ 1)E1

What’s up?... Actually fractional energy spacing: ∆En

En
=

(
2
n
+ 1

n2

)
⇒ 0 if n >> 1

Thus the level spacing is a tiny tiny fraction of the energy value - way below the

ability to resolve discrete lines experimentally.
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3. ψn are discrete, infinite set of functions → can be used to represent any function that
satisfies f(0) = f(a) = 0 ⇒ Fourier’s Theorem.

4. Superposition state is not a stationary state:

Let’s look at time evolution [Ψ∗(x, t)Ψ(x, t)] for a state that is a superposition of the first
three eigenstates of the infinite square well. In particular:

Ψ(x, t) = c1ψ1e
−itE1

ℏ + c2ψ2e
−itE2

ℏ + c3ψ3e
−itE3

ℏ

with c1 = 0.648, c2 = 0.648, c3 = 0.40. See video demo on webpage link.

Where does this weird behavior come from?? → consider simple superposition of ψ1 & ψ2:
with x1 =

πx
a
, x2 =

2πx
a

and Ψ(x, t) = sin(x1)e
−iE1t/ℏ + sin(x2)e

−iE2t/ℏ.
Then probability distribution of finding particle at x (prob. density) is given by:

Ψ∗Ψ = sin2(x1) + sin2(x2) + sin(x1)sin(x2)e
−i(E2−E1)t/ℏ + sin(x1)sin(x2)e

i(E2−E1)t/ℏ

= sin2(x1) + sin2(x2) + 2sin(x1)sin(x2)cos[(E2 − E1)t/ℏ]

and we get an extra time-dependent term [since 2cos(u) = eiu + e−iu]. Of course this
time-dependent term vanishes when we integrate over x because sin(x1) and sin(x2) are
orthogonal.

Summary of stationary state solns. for Ĥ

For Ĥ ̸= H(t), eigenstates of Ĥ are stationary states and can form a complete set of
orthonormal functions. ”Normal” means normalized, ”ortho” means orthogonal (see below).

Now recalling that an arbitrary solution of Schrödinger’s Eq can be written:

Ψ(x, t) =
∞∑
1

cnψn(x)e
− iEnt

ℏ

we can show that

∫ ∞

−∞
Ψ∗(x, t)Ψ(x, t)dx = 1:

This is a product of sums, each with ∞ # of terms · · ·
Picking some specific terms to calculate:

∫ ∞

−∞
Ψ∗(x, t)Ψ(x, t)dx =

∫ ∞

−∞

[
c∗1ψ

∗
1e
iE1t/ℏ c1ψ1e

−iE1t/ℏ + · · ·+ c∗1ψ
∗
1e
iE1t/ℏ c2ψ2e

−iE2t/ℏ + · · ·
]
dx

=

∫ ∞

−∞
|c1|2ψ∗

1ψ1dx+

∫ ∞

−∞
|c2|2ψ∗

2ψ2dx+ · · ·+
∫ ∞

−∞
c∗1c2ψ

∗
1ψ2e

i(E1−E2)t/ℏdx+ · · ·

But normalization gives

∫ ∞

−∞
ψ∗
1ψ1dx = 1 while orthogonality gives

∫ ∞

−∞
ψ∗
1ψ2dx = 0
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Thus all of the cross terms vanish leaving us with:∫ ∞

−∞
Ψ∗(x, t)Ψ(x, t)dx =

∞∑
n

|cn|2 = 1

Overall we have developed a general path to solving Quantum Problems:

1. Solve Ĥψn = Enψn (i.e. find the eigenstates ψn and associated eigenenergies En of Ĥ)

2. Given arbitrary initial state Ψ(x, 0), express this in terms of a superposition of eigenstates
ψn, e.g. Ψ(x, 0) =

∑
anψn(x) → we’ll see how this is always possible next week

3. Use ψ(x, t) = e
−itĤ

ℏ Ψ(x, 0) to evolve wavefunction in time. Thus: Ψ(x, t) =
∑
cnψn(x)e

−iEnt/ℏ

1D Quantum Simple Harmonic Oscillator (QSHO):

V(x)

x

V(x) = 1/2 kx 2

� Any V (x) with a minimum looks like

a SHO, at least near the minimum

� It’s a useful 1st guess for bound systems

(e.g., p, n in nucleus, quarks in p, n)

� It almost looks like square well except that

V → ∞ only when x→ ±∞
∴ particle in SHO can have finite probability all the way to x→ ±∞

For Quantum Mechanics Solution ⇒ find Energy eigenvalues and eigenfunctions!

Given the Hamiltonian:

ĤSHO =
p̂2x
2m

+
1

2
kx̂2

then the Eigenvalue Equation is:

ĤSHOψn(x) =
−ℏ2

2m

d2ψn(x)

dx2
+
k

2
x2ψn(x) = Enψn(x)

The En are discrete because the solutions must be bounded (since V → ∞ as x→ ±∞).

Now let ω0 =
√

k
m

and ξ =
√

mω0

ℏ x, then (dx)2 = ℏ
mω0

(dξ)2 and the Differential

Equation becomes:

−ℏ2

2m

(mω0

ℏ

) d2ψn(ξ)
dξ2

+
mω2

o

2

(
ℏ

mω0

)
ξ2ψn(ξ) = Enψn(ξ)

simplifying:
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−ℏω0
d2ψn(ξ)

dξ2
+ ℏω0ξ

2ψn(ξ) = 2Enψn(ξ)

rewriting gives our final, simple, Diff. Eq:

d2ψn
dξ2

=

(
ξ2 − 2En

ℏω0

)
ψn

⇒ Likewise we can “guess” an approximate solution if x→ 0 (e.g. ξ → 0)

which simplifies the Diff Eq to:
d2ψn
dξ2

= −K2ψn(ξ)

which has the soln., for K = constant: ψn = sin(Kξ) or cos(Kξ).
⇒ Likewise we can “guess” an approximate solution if x→ ∞

which simplifies the Diff Eq to:
d2ψn
dξ2

= ξ2ψn(ξ)

which has the soln.: ψn = e−ξ
2/2.

How do we know this works? ⇒ Check it! · · ·

d

dx

(
d

dx

(
e−ξ

2/2
))

=
d

dx

(
−(2ξ/2)e−ξ

2/2
)
=

d

dx

(
−ξe−ξ2/2

)
= −ξ(−2ξ/2)e−ξ

2/2 − e−ξ
2/2

=
(
ξ2 − 1

)
e−ξ

2/2 ≃ ξ2e−ξ
2/2 = ξ2ψn since ξ → ∞ Q.E.D.

Thus we can guess that the stationary states (energy eigenstates) are
standing waves (e.g. sin/cos) near the origin that vanish as |x| → ∞:

2V(x) = 1/2 kx

φ(x)        0 as x      

V(x)

x

Now, from the text which does all of the Math, we can write the exact solns
for both the eigenstates and energy eigenvalues:

ψn(ξ) =
(mω0

πℏ

)1/4 1√
2nn!

Hn(ξ)e
−ξ2

2 ,with n = 0, 1, 2, ...
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where Hn(ξ) are the so-called Hermite Polynomials (see text) with e.g.
H0 = 1, H1 = 2ξ,H2 = 4ξ2 − 2, ...

↪→ They are a complete set of orthogonal functions well-known to mathematicians.

And finally the energy eigenvalues are

En = (n+ 1
2
)ℏω0, n = 0, 1, 2, . . .

and the spectrum of energies is uniform
(e.g. energy spacing is equal) - see Figure ⇒

with ∆En ≡ En+1 − En = ℏω0 !
hω0 /2

hω0 /2

hω0 /2

E

Equally spaced energy levels

. .
 . 

.

3

5
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