
Phys. 2b 2025, Lecture Notes (Lectures 5 & 6) (1/21-23/2025)

Key Concepts
1. Free Particle Schrödinger Solution
2. Delta-Function Potential δ(x)

II. Free Particle in One Dimension

Free particle has Ĥ = p̂2

2m
thus the time-independent Schrödinger equation is

− ℏ2

2m

d2ψk
dx2

= Eψk

or rewriting
d2ψk
dx2

= −2mE

ℏ2
ψk ≡ −k2ψk

where ψk(x) are the eigenstates. This is easy to solve via:

ψk = A cos(kx) +B sin(kx) is a general soln, but these look like standing waves.

To describe moving particles we want travelling waves, so a better general soln is:

ψk = Aeikx +Be−ikx where

k =
√

2mE
ℏ2 is any real number, and E = ℏ2k2

2m
.

To see the travelling wave nature of these solns we include the time dependence term e−iEt/ℏ:

ψk(x, t) = Aeikxe−
itE
ℏ +Be−ikxe−

itE
ℏ

= Aei(kx−
ℏk2t
2m

)︸ ︷︷ ︸
free particle moving in positive x direction

+ Be−i(kx+
ℏk2t
2m

)︸ ︷︷ ︸
moving in negative x direction

where we have used E = ℏ2k2
2m

. These seem to be reasonable solns ...

But!!

↪→ We can’t normalize these ψk since
∫∞
−∞ ψ∗

kψkdx includes terms like A∗A
∫∞
−∞ dx = ∞.

This occurs because the exponential terms times their complex conjugate is = 1.

Thus ψk can’t be real physical states (since they don’t have finite total probability)

But we know that real particles can be localized: in your hand or in the Solar System.

Thus, even though ψk are not physical wavefunctions, superpositions of ψk can produce
physical states and localized particles ⇒ called wave packets.

Since energies and k values are continuous we should take the discrete sums from earlier
and convert them to integrals. Thus arbitrary free particle solutions should look like:

ψ(x, t)“ ≡′′
∞∑
k=0

Ake
i(kx− ℏk2t

2m
) +Bke

i(−kx− ℏk2t
2m

) ⇒ 1√
2π

∫ ∞

−∞
ϕ(k)ei(kx−

ℏk2t
2m

)dk
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where the integral from −∞ to ∞ allows the ϕ(k) to automatically include both the “Ak”
and the “Bk” terms, and the

√
2π is inserted for ”convenience”.

↪→ since it allows us a connection to Fourier transforms.

But how do we calculate ϕ(k) from a given initial state ψ(x, 0) = ψ(x)?

To do so we set t = 0 in above equation and given ψ(x, 0) = ψ(x)

ψ(x) =
1√
2π

∫ ∞

−∞
ϕ(k)eikxdk

we can then solve for ϕ(k) via a Fourier transform

ϕ(k) =
1√
2π

∫ ∞

−∞
ψ(x, 0)e−ikxdx

Note: ϕ(k) is sometimes called the k-space wave function such that ϕ∗(k)ϕ(k)dk is the
probability of observing a state with wave number (k) between k and k + dk.

And since p = ℏk and E = ℏ2k2/2m = p2/2m, we can also define momentum space wave
function ϕ(p). Then since p = ℏk we have ϕ(p) = 1√

ℏϕ(k).

2. “Delta-function” - δ(x), and the δ(x)-Potential

The properties of the Dirac Delta function δ(x)
(Mathematicians call this a distribution) -
are defined by an integral:

δ(x) = 0 if x ̸= 0 and

∫ ∞

−∞
δ(x)f(x)dx = f(0)

Consider now a finite well with V0 → −∞, a→ 0
but with V0a = constant → V (x) = −V0aδ(x).

Think of V0a as a varying strength for the potential.
And we expect the energy eigenvalues to depend on
this quantity.

V(x)

x

a

V0

I II

There are, very likely, lots of states with E > 0
but these will be travelling waves (see next week).
Here we ask: are there bound states for this potential?

To solve these types of problems we usually break up the space around the localized potential
into regions to solve the eigenvalue equation: Ĥψ = Eψ

Ĥψ =
−ℏ2

2m

d2ψ

dx2
− V0aδ(x)ψ = Eψ

and then use 3 steps to solve (The Recipe):

A. Guess the solution for x ̸= 0 - Note Diff. Eq. is d2ψ
dx2

= −2mE
ℏ2 ψ = 2m|E|

ℏ2 ψ = κ2ψ since E < 0:
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ψI = Ae+κx; for x < 0 with κ2 = −2mE
ℏ2 = 2m|E|

ℏ2 , κ > 0 = real number
ψII = Be−κx; for x > 0.

B. Next we match the wavefunction at x = 0, since we need a continuous ψ(x):

ψI(0) = ψII(0) ⇒ A = B (and from normalization

∫
ψ∗ψdx = 1 , we get: A =

√
κ).

To find allowed values of κ and thus the energy eigenvalues we need another constraint on the
wave function.

What about dψ
dx
? Clearly, this can’t be continuous, since there’s a divergence at x = 0

due to the δ-function. However, due to the properties of δ(x) we can constrain dψ
dx

by
noting that∫ 0+

0−
dx

d

dx

(
dψ

dx

)
=
dψII
dx

∣∣
x=0+

− dψI
dx

∣∣
x=0−

Eq. 1

Then since the Schrodinger Eq. gives: d2ψ
dx2

= d
dx

(
dψ
dx

)
= −2m

ℏ2 [V0aδ(x)− |E|]ψ, the left side is:∫ 0+

0−
dx

d

dx

(
dψ

dx

)
= −

∫ 0+

0−
dx

{
2m

ℏ2
[V0aδ(x)− |E|]ψ(x)

}

= −
(
2mV0a

ℏ2

)
ψ(0) + |E|[xψ(x)]|0+0− = −

(
2mV0a

ℏ2

)
A.

since ψ(0) = A and |E|[xψ(x)]|0+0− = 0.

C. Now work out the algebra to solve for the eigenenergies

We can rewrite Eq. 1 with the new left-hand side:

−
(
2mV0a

ℏ2

)
A =

dψII
dx

∣∣
x=0+

− dψI
dx

∣∣
x=0−

= A(−κ)−Bκ = −2Aκ

giving:

κ =
mV0a

ℏ2
and there is only a single energy eigenvalue, with energy:

⇒ E = −ℏ2κ2

2m
= − ℏ2

2m

(
mV0a

ℏ2

)2

= −mV
2
0 a

2

2ℏ2

There thus exists one and only one bound state
for a δ-well. See figure showing ψ(x) →

1
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Key Concepts
1. Finite Well Solution
2. Introduction to Scattering States

1. Finite Square Well

Consider the finite square well:

V=  -V0

x=−a x=a

V(x)

x
x

ground state

1    excited state

ψ(x)  

x=−a

x=a

st

For E > 0 we again have continuous eigenstates (“plane waves” - see later), but ...

For E < 0 we have a finite number of discrete bound states.

We can use the energy eigenstates of the infinite well as a rough guess for what the ground
and first excited states look like within the well and then make them smoothly go to zero
outside of well → see Fig above for ψ(x).

Thus the ground state is an ”even” function where
ψ(x < 0) = ψ(x > 0) and the 1st excited state is an odd function where
ψ(x < 0) = −ψ(x > 0).

The exact general solutions for the energy eigenstates are from Ĥψn = Enψn.:

−ℏ2

2m

d2ψin
dx2

− V0ψin = Eψin , inside the well

−ℏ2

2m

d2ψout
dx2

= Eψout , outside the well

Consider a Recipe for solving these types of problems:

A. First we “guess” the exact solns for these simple Diff Eqs:

ψin = Acos(k1x) for the even solns inside the well

ψin = Bsin(k1x) for the even solns inside the well

ψout = Ceik2x +De−ik2x for |x| ≥ a , outside the well

with k1 and k2 defined via:
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E =
ℏ2k21
2m

− V0 =
ℏ2k22
2m

which follows from Ĥψ = Eψ.

Note that since E < 0 for bound states we have k1 a Real number while k2 is Imaginary
(since we must have k22 < 0). Thus let k2 = iκ where κ is a Real number. This gives:

ψin = oscillatory solutions [cos(k1x) or sin(k1x)]

ψout = exponentially decaying functions (Ceκx for x < −a and De−κx for x > a)

B. Match the wave function and its first derivative at the points (x = ±a) where the
potential changes - we’ll do it for the even solns (only need to worry about one sign of a; thus:

ψin(a) = ψout(a) which gives: Acos(k1a) = Ceκa and

dψin
dx

|x=a =
dψout
dx

|x=a giving: − Ak1sin(k1a) = −Cκκa

Then dividing the bottom equation by the top one we get:

k1tan(k1a) = κ , a transcendental equation

C. Solving this equation gives the eigenenergies
↪→ this requires a computer or graphical soln (see text).

In particular, note that if either the well depth or width is “too small” there will only be one
bound state (= the even ground state). We can see this, since as V0 → 0, the first excited
state (the odd sin function) has only 1/2 of a wavelength inside the well such that

2a =
λ

2
; or λ = 4a =

2π

k1
; k1 =

π

2a

But to be a bound state we must also have E < 0 such that the first excited state
(or any excited state for that matter) will not exist if

ℏ2k21
2m

> |V0| ; or

√
2ma2V0

ℏ2
<
π

2
, or a2V0 <

π2ℏ2

8m

since k1 = π/2a.

Introduction to 1-D Scattering States

Why Discuss scattering?
↪→ Essential tool in many branches of physics:

� Condensed Matter Physics ⇒ neutron-materials, X-ray-materials
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� Nuclear Physics ⇒ p-Nucleus, e−-nucleus

� Atomic Physics ⇒ e−-Atom, Laser-Atom

� Particle Physics ⇒ p− p̄, e− − e+

� Astrophysics ⇒ Cosmic Microwave Background Radiation-e−

Scattering reveals information on elementary force laws and the structure of objects. We will
consider only elastic scattering (energy is conserved).

Consider a localized potential
⇒ V (x) ̸= 0, a ≤ x ≤ b

→ 0, |x| → ∞

V(x)

x

Now consider a wave packet incident on a localized V (x).
The packet can “scatter” from potential (like e−-Atom collision)

V(x)

x

V(x)

x

p

p
p

t < t0 ⇒
Wave packet incident
from the left

t > t0 ⇒
May get both a
reflected and a
transmitted wave packet.

We will solve a simpler problem: “shooting” a beam of particles at the potential and
determining the form of the wave function far from the potential. By a beam of particles,
we mean plane waves [a.k.a. momentum eigenstates: ψ(x, t) = Aei(k0x−ωt)].

↪→ These solutions can then be superposed to create arbitrary wave packets.

To characterize the scattering of a beam, it is useful to define a particle flux Jx(x)

Jx ≡
(

ℏ
2mi

)(
ψ∗∂ψ

∂x
− ∂ψ∗

∂x
ψ

)
↪→ text calls this “Probability Current”.

Jx has dimensions of “particles/sec”.

Example: Consider Particle beam moving towards +x:
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ψ(x, t) = λ
1
2 ei(k0x−ωt)

where |λ|2 is number of particles per unit length. Then:

Jx =
ℏ

2mi
(λ)[ik0 − (−ik0)] = λ

ℏk0
m

= λv0 . which has units of particles/sec = flux!
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