Phys. 2b 2025, Lecture Notes (Lectures 5 & 6) (1/21-23/2025)

Key Concepts
1. Free Particle Schrodinger Solution
2. Delta-Function Potential §(z)

I1. Free Particle in One Dimension

Free particle has H= % thus the time-independent Schrodinger equation is
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or rewriting d;/;k =— 7;; U = —k*y,

where 1 (x) are the eigenstates. This is easy to solve via:

Y = Acos(kx) + Bsin(kx) is a general soln, but these look like standing waves.

To describe moving particles we want travelling waves, so a better general soln is:
U, = Ae™*™ 4+ Be ™ where
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is any real number, and £ =

To see the travelling wave nature of these solns we include the time dependence term e *#¢/":

e(z,t) = Ae*re="% 4 Be~thre= "%
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free particle moving in positive z direction = moving in negative x direction
272
where we have used F = % These seem to be reasonable solns ...
But!!

— We can’t normalize these 1, since ffooo Yippdr includes terms like A*A ffooo dx = oo.
This occurs because the exponential terms times their complex conjugate is = 1.

Thus ¢ can’t be real physical states (since they don’t have finite total probability)

But we know that real particles can be localized: in your hand or in the Solar System.

Thus, even though v are not physical wavefunctions, superpositions of ¢, can produce
physical states and localized particles = called wave packets.

Since energies and k values are continuous we should take the discrete sums from earlier
and convert them to integrals. Thus arbitrary free particle solutions should look like:
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where the integral from —oo to oo allows the ¢(k) to automatically include both the “A;”
and the “B,” terms, and the /27 is inserted for ” convenience” .
— since it allows us a connection to Fourier transforms.

But how do we calculate ¢(k) from a given initial state ¥ (x,0) = 1 (z)?

To do so we set t = 0 in above equation and given ¢ (z,0) = ¢(x)
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we can then solve for ¢(k) via a Fourier transform
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Note: ¢(k) is sometimes called the k-space wave function such that ¢*(k)¢(k)dk is the
probability of observing a state with wave number (k) between k and k + dk.

And since p = hk and E = h?k?/2m = p?/2m, we can also define momentum space wave
function ¢(p). Then since p = hk we have ¢(p) = \/Lﬁgzﬁ(k)

. “Delta-function” - §(x), and the ¢(x)-Potential

The properties of the Dirac Delta function 6 (x)
(Mathematicians call this a distribution) -
are defined by an integral:
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Consider now a finite well with V5 — —o0,a — 0
but with Vya = constant — V' (z) = —Vpad(z).

Think of Vya as a varying strength for the potential.
And we expect the energy eigenvalues to depend on
this quantity.

There are, very likely, lots of states with £ > 0 A
but these will be travelling waves (see next week).
Here we ask: are there bound states for this potential?

To solve these types of problems we usually break up the space around the localized potential
into regions to solve the eigenvalue equation: Hy = E
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and then use 3 steps to solve (The Recipe):

A. Guess the solution for x # 0 - Note Diff. Eq. is ‘C%ﬁ = —QZQELD = 2"};|2E|w = k%) since £ < 0:
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P = Ae™®; for x <0 with x? = —27;:2E = QTZ‘QM ,k > 0 = real number
Y = Be™*; for x > 0.

B. Next we match the wavefunction at x = 0, since we need a continuous ¥ (z):
¥1(0) = ¢r(0) = A= B (and from normalizationfw*@/)dx =1, we get: A=+/k).

To find allowed values of k and thus the energy eigenvalues we need another constraint on the
wave function.

What about Z—f? Clearly, this can’t be continuous, since there’s a divergence at x = 0
due to the §-function. However, due to the properties of §(x) we can constrain % by
noting that
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Then since the Schrodinger Eq. gives: d%ﬁ =4 (&) = _2n [Viad(x) — | E|] ¢, the left side is:

Eq. 1
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since ¢(0) = A and |E|[z(2)]|9" = 0.

C. Now work out the algebra to solve for the eigenenergies

We can rewrite Eq. 1 with the new left-hand side:
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giving:
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and there is only a single energy eigenvalue, with energy:

R (mVoa)2 __mlga®

= F = - -
2m 2m h? 2h2

There thus exists one and only one bound state
for a 0-well. See figure showing ¢ (x) —



Key Concepts
1. Finite Well Solution
2. Introduction to Scattering States

1. Finite Square Well

Consider the finite square well:

A V(X) w(x)

ground state

X=—a

e

V= -V, 1% excited state

For E > 0 we again have continuous eigenstates (“plane waves” - see later), but ...
For E < 0 we have a finite number of discrete bound states.
We can use the energy eigenstates of the infinite well as a rough guess for what the ground

and first excited states look like within the well and then make them smoothly go to zero
outside of well — see Fig above for ¢(x).

Thus the ground state is an "even” function where
(x < 0) =1(z > 0) and the 1st excited state is an odd function where

P(r <0) = —(x > 0).

The exact general solutions for the energy eigenstates are from H Up = B,
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Consider a Recipe for solving these types of problems:

— Vovin = Evy, , inside the well

= Fv, , outside the well

A. First we “guess” the exact solns for these simple Diff Eqs:

Vin = Acos(kix) for the even solns inside the well
Vin = Bsin(kix) for the even solns inside the well
Vour = Ce™? 4 De™*2% for |z| > a , outside the well

with &y and k9 defined via:



which follows from H v = E1.

Note that since £ < 0 for bound states we have k; a Real number while ko is Imaginary
(since we must have k3 < 0). Thus let ky = ix where k is a Real number. This gives:
i, = oscillatory solutions [cos(kix) or sin(kix)]

Yo = exponentially decaying functions (Ce"* for z < —a and De™"* for z > a)

B. Match the wave function and its first derivative at the points (r = +a) where the
potential changes - we’ll do it for the even solns (only need to worry about one sign of a; thus:

WYin(a) = Pou(a) which gives: Acos(kia) = Ce™ and
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|lo=a giving: — Akysin(kia) = —Ck

Then dividing the bottom equation by the top one we get:

kitan(kia) = k , a transcendental equation

C. Solving this equation gives the eigenenergies
< this requires a computer or graphical soln (see text).

In particular, note that if either the well depth or width is “too small” there will only be one
bound state (= the even ground state). We can see this, since as Vy — 0, the first excited
state (the odd sin function) has only 1/2 of a wavelength inside the well such that
A 2m 7r
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But to be a bound state we must also have ' < 0 such that the first excited state
(or any excited state for that matter) will not exist if

m2h?

8m

h? k%
2m

2ma?Vj
72

> |Vo| ; or

T
< 5 0 Or a’Vy <
since k; = 7/2a.

Introduction to 1-D Scattering States

Why Discuss scattering?
— Essential tool in many branches of physics:

e Condensed Matter Physics = neutron-materials, X-ray-materials



e Nuclear Physics = p-Nucleus, e -nucleus

e Atomic Physics = e~ -Atom, Laser-Atom

e Particle Physics = p—p, e~ — et

e Astrophysics = Cosmic Microwave Background Radiation-e~

Scattering reveals information on elementary force laws and the structure of objects. We will
consider only elastic scattering (energy is conserved).

Consider a localized potential 4 V()

=V()#0, a<xz<b
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Now consider a wave packet incident on a localized V' (z).
The packet can “scatter” from potential (like e”-Atom collision)
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We will solve a simpler problem: “shooting” a beam of particles at the potential and
determining the form of the wave function far from the potential. By a beam of particles,
we mean plane waves [a.k.a. momentum eigenstates: 1 (z,t) = Ae'(For=wt)],

— These solutions can then be superposed to create arbitrary wave packets.

To characterize the scattering of a beam, it is useful to define a particle flux J,(z)
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— text calls this “Probability Current”.

J, has dimensions of “particles/sec”.

Example: Consider Particle beam moving towards +ux:



¢(x’ t) _ )\%ei(koxfwt)
where |A|? is number of particles per unit length. Then:
h hko

Jo = ——(N)[iko — (—iko)] = A— = Avp . which has units of particles/sec = flux!
2ma m



