Homework #6

Problem 3.14

(a) Prove the following commutator identities:
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(b) Show that
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(c) Show more generally that

[f(x), p] = ih%. (3.66)

for any function f(x) that admits a Taylor series expansion.

Problem 3.33 Sequential measurements. An operator 4, representing observable

4, has two (normalized) eigenstates Y| and {5, with eigenvalues @] and a3,
respectively. Operator g, representing observable B, has two (normalized)

eigenstates ¢b] and ¢hy, with eigenvalues b| and b>. The eigenstates are related

by
V1 = (31 +4¢2) /5, Y2 = (41 — 3¢2) /5.

(a) Observable A4 is measured, and the value @) is obtained. What is the state
of the system (immediately) after this measurement?

(b) If B is now measured, what are the possible results, and what are their
probabilities?

(c) Right after the measurement of B, A is measured again. What is the
probability of getting @? (Note that the answer would be quite different if

I had told you the outcome of the B measurement.)
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*  Problem 3.37 Virial theorem. Use Equation 3.73 to show that
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where T is the kinetic energy (H = T + V). In a stationary state the left side

is zero (why?) so
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This is called the virial theorem. Use it to prove that (T) = (V') for stationary

states of the harmonic oscillator.



