Homework #6

* Problem 3.14

(a) Prove the following commutator identities:

$$\left[\hat{A} + \hat{B}, \hat{C}\right] = \left[\hat{A}, \hat{C}\right] + \left[\hat{B}, \hat{C}\right],\tag{3.64}$$

$$\left[\hat{A}\hat{B},\hat{C}\right] = \hat{A}\left[\hat{B},\hat{C}\right] + \left[\hat{A},\hat{C}\right]\hat{B}. \tag{3.65}$$

(b) Show that

$$[x^n, \hat{p}] = i\hbar n x^{n-1}.$$

(c) Show more generally that

$$[f(x), \hat{p}] = i\hbar \frac{df}{dx}, \tag{3.66}$$

for any function f(x) that admits a Taylor series expansion.

Problem 3.33 Sequential measurements. An operator \hat{A} , representing observable A, has two (normalized) eigenstates ψ_1 and ψ_2 , with eigenvalues a_1 and a_2 , respectively. Operator \hat{B} , representing observable B, has two (normalized) eigenstates ϕ_1 and ϕ_2 , with eigenvalues b_1 and b_2 . The eigenstates are related by

$$\psi_1 = (3\phi_1 + 4\phi_2)/5, \quad \psi_2 = (4\phi_1 - 3\phi_2)/5.$$

- (a) Observable A is measured, and the value a_1 is obtained. What is the state of the system (immediately) after this measurement?
- **(b)** If *B* is now measured, what are the possible results, and what are their probabilities?
- (c) Right after the measurement of B, A is measured again. What is the probability of getting a_1 ? (Note that the answer would be quite different if I had told you the outcome of the B measurement.)

* Problem 3.37 Virial theorem. Use Equation 3.73 to show that

$$\frac{d}{dt}\langle xp\rangle = 2\langle T\rangle - \left\langle x\frac{\partial V}{\partial x}\right\rangle,\tag{3.112}$$

where T is the kinetic energy (H = T + V). In a *stationary* state the left side is zero (why?) so

$$2\langle T \rangle = \left\langle x \frac{dV}{dx} \right\rangle. \tag{3.113}$$

This is called the virial theorem. Use it to prove that $\langle T \rangle = \langle V \rangle$ for stationary states of the harmonic oscillator.