Problem 1.5 (12 pts)
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Probability outside:
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Problem 1.7 (12 pts)

From Eq. 1. &&, dt th 5t (\P*g‘f) dx. But, noting that gj;’t = gir;l; and using Eqs. 1.23-1.24:
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The first term integrates to zero, using 1nteg1ati0n by parts twice, and the second term can be simplified to
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We can see that the first term goes to zero as follows.
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Problem 1.17 (16 pts)
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Since we only know (z) at ¢ = 0 we cannot calculate d(z)/dt directly.
@) 2 pts

(2?) = Az/ z*(a® - ;I:Z)Zd;v = 2A2/ (a*2® = 2a°2* + 2%)dz
—a 0

=9 10 [a4§—2a2£+z—7:| a_

16a®

_%a2(35—42+15)_a2_8_
T8\ Fg7 ) 8 T
(e) 2pts

d2

(pQ) — —A2J2 /a (a2 _12) P(az _
—a :

[ 3
=4 2 (-2
16a° 3

() 2 pts

1 a
or =/ (22) — (z) =U?a2= 7
(®) 2 pts
SR o e R L I
() 2 pts

go—i.\/gﬁ—‘,ih—‘lgé>ﬁ‘/
TP V2a V1o TV T27 2

]3 1:5
4 2T d
[a z—2a—+—r]

“l2a

5 h?

a
0



SP1 (10 pts)

(a)5 pts

Using the Coulomb potential, where e is the charge of an electron, and m its mass.
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These values are exactly the same as that of the Bohr model.



SP1.5 (10 pts)

(a)

(2 pts) The wavefunction v (z) contains jump discontinuities at © = +a/2. This
is not physically allowed because the second derivative ¢”(zx) is not continuous,
Land thus the Schrodinger equation is ill-defined.

To be more concrete, we can consider a ‘smoothed’ wavefunction, ? such that
¥ (x) varies rapidly between 0 and A near xq = +a/2, where the change in ¢ ()
occurs within a small interval € of zg, and study what happens as ¢ — 0*. For
example, we can consider the average kinetic energy
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Since the wavefunction is mostly flat, the contribution to the integral mainly
comes from the points near z. From dimensional analysis,
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Thus, the average kinetic energy of the quantum particle diverges as 1/e, which
is unphysical.
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(6 pts) Since 9 (x) is an even function of z, and f(z) = z is an odd function,
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by symmetry. Next,
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Thus, the standard deviation of the position is
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INote that the bound state wavefunction for the delta potential well has a continuous second
derivative, even though the wavefunction itself is non-analytic (i.e., cusp).

2The ‘smoothed’ wavefunction can be constructed explicitly, although unnecessary. One way to
do so is to notice that 1 (x) is the Fourier transform of the sinc function sin k/k (up to some factor).
One can then multiply this by a Gaussian factor exp(—e2k?), and take the inverse Fourier transform.

3The minus sign comes from the fact that the average kinetic energy is positive.



