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Problem 1.7 (2 )

We can see that the first term goes to zero as follows.
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Problem 1.17 (6 )
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SP1 ( )

(a)5 pts

Using the Coulomb potential, where e is the charge of an electron, and m its mass.

E =
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(b)5 pts

Energy is minimum for
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These values are exactly the same as that of the Bohr model.
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SP1.5 (10 pts)

(a) (2 pts) The wavefunction  (x) contains jump discontinuities at x = ±a/2. This
is not physically allowed because the second derivative  00(x) is not continuous,
1 and thus the Schrödinger equation is ill-defined.

To be more concrete, we can consider a ‘smoothed’ wavefunction, 2 such that
 (x) varies rapidly between 0 and A near x0 ⌘ ±a/2, where the change in  (x)
occurs within a small interval ✏ of x0, and study what happens as ✏ ! 0+. For
example, we can consider the average kinetic energy

hT i =  ~2

2m

Z 1

1
dx ⇤(x)

d2 (x)

dx2
. (1)

Since the wavefunction is mostly flat, the contribution to the integral mainly
comes from the points near x0. From dimensional analysis, 3
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✏
. (2)

Thus, the average kinetic energy of the quantum particle diverges as 1/✏, which
is unphysical.

(b) (2 pts)

1 =

Z 1
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a
. (3)

(c) (6 pts) Since  (x) is an even function of x, and f(x) = x is an odd function,
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by symmetry. Next,
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Thus, the standard deviation of the position is

x =

q
hx̂2i hxi2 = a

2
p
3

(6)

1Note that the bound state wavefunction for the delta potential well has a continuous second
derivative, even though the wavefunction itself is non-analytic (i.e., cusp).

2The ‘smoothed’ wavefunction can be constructed explicitly, although unnecessary. One way to
do so is to notice that  (x) is the Fourier transform of the sinc function sin k/k (up to some factor).
One can then multiply this by a Gaussian factor exp(✏2k2), and take the inverse Fourier transform.

3The minus sign comes from the fact that the average kinetic energy is positive.


