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Classically allowed region extends out to: 1
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0 = E0 = 1
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2)) (in notation of CRC Table) = 0.157.
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. So the probability of getting En is

Pn = |cn|2 =
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 .

Most probable: E2 =
π2


2

2ma2
(same as before). Probability: P2 = 1/2.

(b) Next most probable: E1 =
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, with probability P1 =
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Problem 2.5

(a)
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a
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= 0.3603(a/2); angular frequency: 3ω =
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(d)
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(e) You could get either E1 = π2


2/2ma2 or E2 = 2π2


2/ma2, with equal probability P1 = P2 = 1/2.

So 〈H〉 =
1
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5π2


2
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; it’s the average of E1 and E2.
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PROBLEM 2

a) This is a bad question. Quantum mechanics can't answer a question about where a

particle is, only the probability of measuring the particle at some location.

b) This is a good question. Yes, you can predict the energy since the particle is in an

energy eigenstate of this potential.

c) This is a good question. Yes, it really is.

(Alternative answer: quantum mechanics is not bizarre in the sense that we can
make accurate predictions using the mathematical formalism.) (Any answer with a
valid justification will be accepted for this one.)

d) This is a bad question. As in part a), quantum mechanics can't answer a question

about what value of momentum the particle has, only the probability of measuring a

particular momentum.

e) This is a good question. The answer is no. A stationary state is in an energy

eigenstate, but a measurement of its position will be a value from a distribution

(e.g. ), which will be somewhere between 0 and a, but different each time.
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Alternative answer: this is a good question - the particle is in an energy eigenstate,

not a zero momentum eigenstate, so the answer is no.
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SP3 (4pts)

According to Wikipedia's Baseball (ball) page, a regulation baseball weighs 0.142 - 0.149 kg.

Let our MLB fastball weigh 0.145 kg. For a fastball travelling at 100 mph, the momentum is roughly 6.48 kg * m / s.

The de Broglie wavelength λ = h/p ≈ 1.022 × 10^－34 m.

This is about 32 orders of magnitude smaller than the diameter of the baseball. Our baseball will not

display any wavelike behavior, as a result.
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