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Equation 2.94 says Ψ = Aei(kx− k2
2m t), so

J =
i

2m


Ψ

∂Ψ∗

∂x
− Ψ∗ ∂Ψ

∂x


=



2
i

m
|A|2


ei(kx− k2

2m t)(−ik)e−i(kx− k2
2m t) − e−i(kx− k2

2m

2
t)(ik)ei(kx− 

2
k
m t)



i
A 2( 2ik) =

k
=

2m
| | −

m
|A|2.

It flows in the positive (x) direction (as you would expect).
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If k > 0, then J is positive, meaning direction of flow is in the positive x-direction.

If k < 0, then J is negative, meaning direction of flow is in the negative x-direction.
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c) 
In the limit that a approaches zero, the potential looks like V(x)= -2αδ(x).  Therefore, we expect there to be only one (even) 
bound state with an energy of E= (-2mα^2)/ħ^2 .  When a=0 is plugged into the transcendental equation for even 
solutions, we arrive at this solution, with κ=2mα/ħ^2 .  When a=0 is plugged into the transcendental equation for odd 
solutions, we obtain κ=0 and E=0 - indicating that there is no odd solution, as was expected.

In the limit that a approaches infinity, both delta functions are infinitely far away from each other; therefore, the potential 
at plus or minus infinity looks like a single delta function potential.  As a result, we expect there to be two bound states 
(even and odd), both with an energy of E= (-mα^2)/(2ħ^2 ).  When a=∞ is plugged into the transcendental equation for 
even solutions and odd solutions, we obtain κ=mα/ħ^2  and E= (-mα^2)/(2ħ^2 ) in both cases, exactly as expected.
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Problem 2.21
(a)
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(c)
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Or, with w ≡
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. As t increases, the graph of |Ψ|2 flattens out and broadens.
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(d)
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Write Ψ = Be−bx2
, where B ≡
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Closest at t = 0, at which time it is right at the uncertainty limit.
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