Physics 2b Solutions - BP3 Caltech, 2025

Problem 2.19 (10 pts)
Equation 2.94 says ¥ = Aei(’”*%t), SO
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If kK > 0, then J is positive, meaning direction of flow is in the positive x-direction.

If kK < 0, then J is negative, meaning direction of flow is in the negative x-direction.



Problem 2.27 (26 pts)
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1 8ptS (b) From Problem 2.1(c) the solutions are even or odd. Look first for even solutions:

Ae=r* (z < a),
P(x) =4 B(e"™ +e ") (—a <z <a),
Aer* (z < —a).

Continuity at a : Ae™*® = B(e"® 4 e™"%), or A = B(e** 4+ 1).
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This is a transcendental equation for £ (and hence for E). I'll solve it graphically: Let z = 2ka, ¢ = ﬁ,

s0 €~% = ¢z — 1. Plot both sides and look for intersections:

/e z

From the graph, noting that ¢ and z are both positive, we see that there is one (and only one) solution
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(for even ¢). If a = %, so ¢ = 1, the calculator gives z = 1.278, so k% = —”F:'TE = (;—a); = FE =
—g.2m? (%) = —0.204 (,%::) .
Now look for odd solutions:
Ae~r* (z < a),
Y(x) =< B(e™ —e™) (—a <z < a),
—Aer* (z < —a).

Continuity at a : Ae™"® = B(e"® — ™), or A = B(e*"* —1).
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This time there may or may not be a solution. Both graphs have their y-intercepts at 1, but if ¢ is too
large (a too small), there may be no intersection (solid line), whereas if ¢ is smaller (dashed line) there
will be. (Note that z =0 = x = 0 is not a solution, since v is then non-normalizable.) The slope of e™*
(at z = 0) is —1; the slope of (1 — ¢2) is —c. So there is an odd solution < ¢ < 1, or a > % /2ma.

Conclusion: | One bound state if o < h%/2ma; two if a > h%/2ma. |
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—rL—2:>c—l Even: e™* = 32 —1 = 2 = 221772,
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E = ~0.615(h /ma?); E = —0.317(h /ma?).]
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In the limit that a approaches zero, the potential looks like V(x)= -2a8(x). Therefore, we expect there to be only one (even)
bound state with an energy of E= (-2ma/2)/hA2 . When a=0 is plugged into the transcendental equation for even
solutions, we arrive at this solution, with k=2ma/h”2 . When a=0 is plugged into the transcendental equation for odd
solutions, we obtain k=0 and E=0 - indicating that there is no odd solution, as was expected.

In the limit that a approaches infinity, both delta functions are infinitely far away from each other; therefore, the potential
at plus or minus infinity looks like a single delta function potential. As a result, we expect there to be two bound states
(even and odd), both with an energy of E= (-ma~2)/(2hA2 ). When a=eo is plugged into the transcendental equation for
even solutions and odd solutions, we obtain k=ma/h”2 and E= (-ma~2)/(2h"2 ) in both cases, exactly as expected.



Problem 2.21 (24pts)
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Let 6 = 2hat/m. Then |¥|? = . The exponent is
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Or, with w = 4 / 1 f02’ | = \/jwe_%z”z. As t increases, the graph of |¥|? flattens out and broadens.
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Closest at at which time it is right at the uncertainty limit.



