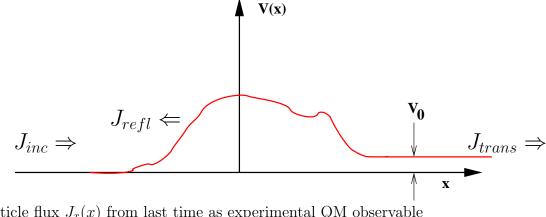
Phys. 2b 2025, Week 4 Lecture Notes (Lectures 7 & 8) (1/28-30/2025)

Key Concepts

- 1. Reflection and Transmission in 1D Scattering
- 2. 1D-Step Barrier Solution

Solving 1D Scattering Problems:

Consider a beam of particles incident from the left on a localized potential bump. Look for solutions of the form:



Can use particle flux $J_x(x)$ from last time as experimental QM observable Extract: $J_{incident}, J_{reflected}, J_{transmitted}$

First "guess" solutions to $\hat{H}\psi = E\psi$ for $x \to -\infty$, $x \to +\infty$

solution for
$$x \to -\infty$$

$$\begin{cases}
\psi_{inc} = Ae^{i(k_1x - \omega t)}; & \text{with } p_{inc} = \hbar k_1, \text{ plane wave to the right} \\
\psi_{refl} = Be^{i(-k_1x - \omega t)}; & \text{with } p_{refl} = -\hbar k_1, \text{ plane wave to the left}
\end{cases}$$

solution for $x \to +\infty$ $\psi_{trans} = Ce^{i(k_2x - \omega t)}$; with $p_{trans} = \hbar k_2$, plane wave to the right

For a given energy E (or k_1) and assuming that $\hat{H} \neq H(t)$, we have

for $x \to -\infty$; $\hat{H}\psi = \hat{H}(\psi_{inc} + \psi_{refl}) = E(\psi_{inc} + \psi_{refl}) \Rightarrow \frac{\hbar^2 k_1^2}{2m} = E$ for $x \to +\infty$; $\hat{H}\psi = \hat{H}\psi_{trans} = E\psi_{trans} \Rightarrow \frac{+\hbar k_2^2}{2m} + V_0 = E$ If $E > V_0$ then k_2 is real (for $E < V_0$, see later). Now can calculate $J_{inc}, J_{refl}, J_{trans}$ via

$$J_x \equiv \left(rac{\hbar}{2mi}
ight) \left(\psi^* rac{\partial \psi}{\partial x} - rac{\partial \psi^*}{\partial x} \psi
ight)$$

Using the above solutions we have

$$J_{inc} = \frac{-i\hbar}{2m} (2ik_1)|A|^2 = \frac{\hbar k_1}{m}|A|^2$$

$$J_{refl} = \frac{-i\hbar}{2m}(-2ik_1)|B|^2 = -\frac{\hbar k_1}{m}|B|^2$$

$$J_{trans} = \frac{-i\hbar}{2m} (2ik_2) |C|^2 = \frac{\hbar k_2}{m} |C|^2 ; \text{ valid only for } E > V_0 \text{ (see later for } E < V_0)$$

Now define the Transmission coefficient

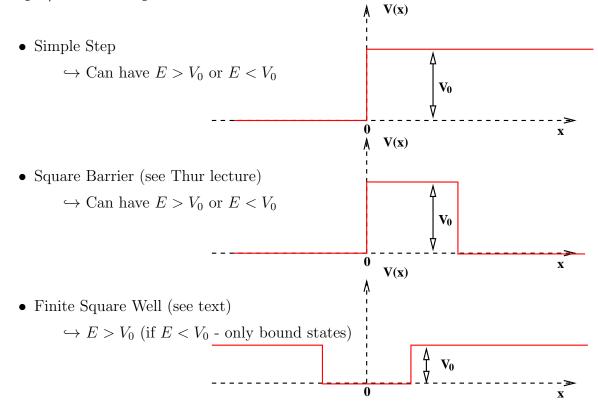
$$T \equiv \left| \frac{J_{trans}}{J_{inc}} \right| = \left| \frac{C}{A} \right|^2 \frac{k_2}{k_1}; \quad \text{NOTE: valid only for } E > V_0$$

and the Reflection coefficient

$$R \equiv \left| \frac{J_{refl}}{J_{inc}} \right| = \left| \frac{B}{A} \right|^2$$

Then since probability is conserved we have T + R = 1.

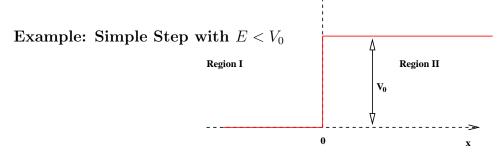
Simple/Solvable Square 1-D "Barriers":



Above are five "different" problems with a simple Recipe:

a. "Guess" Solution of Schrödinger Equation

- b. Match ψ and $\frac{\partial \psi}{\partial x}$ (to keep E finite) at boundaries (where V changes)
- c. Do the Math: Solve for amplitudes (A, B, C, ...) and $J_{inc}, J_{ref}, J_{trans}$ or T and R. Note that equations could be transcendental. $\bigwedge \mathbf{v}_{(\mathbf{x})}$



Find Transmission and Reflection Coefficients (following the recipe):

a. Guess solution

 $x \leq 0: \psi_I(x) = Ae^{ik_1x} + Be^{-ik_1x} \quad \text{Region I}$ $x \geq 0: \psi_{II}(x) = Ce^{+ik_2x} \quad \text{Region II}$ with $E = \frac{\hbar^2 k_1^2}{2m} = \frac{\hbar^2 k_2^2}{2m} + V_0$ Note: $k_2 = \sqrt{\left(\frac{2m}{\hbar^2}\right)(E - V_0)}$ but $E < V_0 \therefore k_2$ is imaginary. Thus let $k_2 = +i\kappa$ (κ is real) \rightarrow need decaying exponential for $x \rightarrow \infty$, giving

$$x \ge 0: \psi_{II}(x) = Ce^{-\kappa x}$$

b. Match at x = 0:

$$\psi_I(0) = \psi_{II}(0) \Rightarrow A + B = C$$

and $\frac{\partial \psi_I}{\partial x}|_{x=0} = \frac{\partial \psi_{II}}{\partial x}|_{x=0} \Rightarrow ik_1A - ik_1B = -\kappa C$

c. Algebra: Solve for A, B, C (assumed complex)

$$\begin{cases} \frac{C}{A} = \frac{B}{A} + 1\\ \frac{C}{A} = \frac{-ik_1}{\kappa} + \frac{ik_1}{\kappa} \left(\frac{B}{A}\right) & \Rightarrow \frac{B}{A} \left(1 - \frac{ik_1}{\kappa}\right) = \frac{-ik_1}{\kappa} - 1 \end{cases}$$

giving

$$\frac{B}{A} = \frac{-(1 + \frac{ik_1}{\kappa})}{(1 - \frac{ik_1}{\kappa})}$$

and

$$\frac{C}{A} = \frac{B}{A} + 1 = \frac{-1 - \frac{ik_1}{\kappa} + 1 - \frac{ik_1}{\kappa}}{1 - \frac{ik_1}{\kappa}} = \frac{\frac{-2ik_1}{\kappa}}{1 - \frac{ik_1}{\kappa}} = \frac{2}{1 + \frac{i\kappa}{k_1}}$$

then since

$$J_{inc} = \frac{\hbar}{2mi} \left(\psi_{inc}^* \frac{\partial \psi_{inc}}{\partial x} - \frac{\partial \psi_{inc}^*}{\partial x} \psi_{inc} \right)$$

$$J_{inc} = \frac{\hbar}{2mi} [A^* e^{-ik_1 x} (+ik_1 A e^{ik_1 x}) - (-ik_1 A^* e^{-ik_1 x}) A e^{ik_1 x}]$$

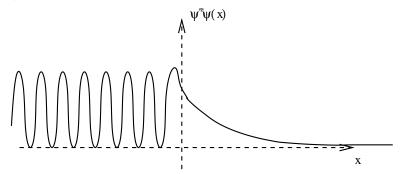
$$= \frac{\hbar}{2mi} |A|^2 (2ik_1) = \frac{\hbar k_1}{m} |A|^2$$

$$J_{trans} = \frac{\hbar}{2mi} [C^* e^{-\kappa x} (-\kappa C e^{-\kappa x}) - C e^{-\kappa x} (-\kappa C^* e^{-\kappa x})]$$

$$= \frac{-\hbar \kappa}{2mi} [|C|^2 - |C|^2] e^{-2\kappa x} = 0$$

$$\therefore \quad T = 0, \ R = 1$$

What does $\psi^* \psi$ look like?

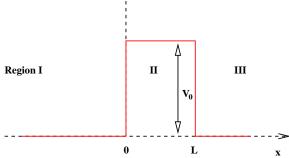


Consider some examples in PHET website for both plane waves and wave packets (Demo in Lecture).

Key Concepts

- 1. Quantum Tunneling
- 2. Subtlies in Understanding Tunneling

II. Quantum Tunneling



 $\bigwedge V(x)$

Assume $E < V_0$

a. Guess the form of the solution:

$$\begin{array}{rcl} x \leq 0; & \psi_I &= Ae^{ik_1x} + Be^{-ik_1x} \\ 0 \leq x \leq L; & \psi_{II} &= Ce^{ik_2x} + De^{-ik_2x} = Ce^{-\kappa x} + De^{\kappa x}; \ k_2 = i\kappa; \ \text{see below} \\ x \geq L; & \psi_{III} &= Fe^{ik_3x} \end{array}$$

using
$$\hat{H}\psi = E\psi$$
 we get: $E = \frac{\hbar^2 k_1^2}{2m} = \frac{\hbar^2 k_2^2}{2m} + V_0 = \frac{\hbar^2 k_3^2}{2m}$

$$\therefore \quad k_3 = k_1, \ k_2 = \sqrt{\frac{2m}{\hbar^2}(E - V_0)} \equiv i\kappa(\kappa \text{ is real, since} E < V_0)$$

or

$$\kappa = \sqrt{\frac{2mV_0}{\hbar^2} - k_1^2}$$

b. Match wavefunction and derivative at x = 0 and x = L:

$$\psi: A + B = C + D$$

$$Ce^{-\kappa L} + De^{+\kappa L} = Fe^{ik_1L}$$

$$\frac{\partial \psi}{\partial x}: A(ik_1) + B(-ik_1) = C(-\kappa) + D(\kappa)$$

$$C(-\kappa)e^{-\kappa L} + D(\kappa)e^{\kappa L} = F(ik_1)e^{ik_1L}$$

c . Solving for T, we first need $F/A {:}$

$$\frac{F}{A} = \frac{e^{-ik_1L}}{\cosh(\kappa L) + i\left[\frac{\kappa^2 - k_1^2}{2k_1\kappa}\right]\sinh(\kappa L)}$$

Which gives

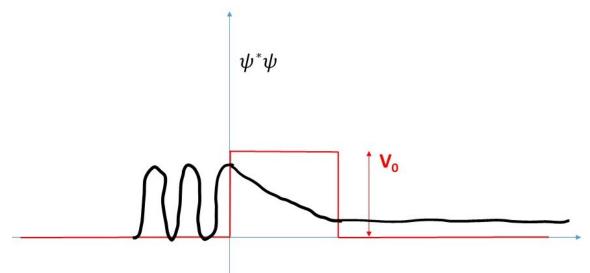
$$T = \left|\frac{F}{A}\right|^2 \frac{k_3}{k_1} = \left|\frac{F}{A}\right|^2 = \frac{1}{\cosh^2(\kappa L) + \left(\frac{\kappa^2 - k_1^2}{2k_1\kappa}\right)^2 \sinh^2(\kappa L)} = \frac{1}{1 + \left(\frac{k_1^2 + \kappa^2}{2k_1\kappa}\right)^2 \sinh^2(\kappa L)}$$

or in terms of $E \& V_0$:

$$T = \frac{1}{1 + \frac{V_0^2}{4E(V_0 - E)} sinh^2(\kappa L)}$$

Then since probability is conserved, R = 1 - T.

We find that T > 0 even if $E < V_0 \rightarrow$ particle "tunnels through" barrier! \rightarrow finite probability of reaching classically inaccessible region



What is particle's "velocity" in the barrier?

$$v = \frac{p}{m} = \frac{\hbar k_2}{m} = \frac{i\hbar\kappa}{m} = \text{imaginary!!}$$

Computer Demo: PHET website using plane waves first and then demo of wave packet tunneling

 \hookrightarrow Adventures of Buckaroo Banzai across the 8th Dimension (see lecture Video).

Also see online articles in lecture about subtleties in "time to cross barrier".