Physics 2b Solutions - BP4 Caltech, 2025

Problem 2.28 (20 pts)

Ae*® 4+ Be~ T (3 < —aq)
=1 Ce* 4 De=™* (—q <z <a) y. Impose boundary conditions:
Fetkz (x >a)

(1) Continuity at —a : Ae’*® + Be'** = Ce~a 4 De*® = 3A + B = 3C + D, where 3 = e~ 2,
(2) Continuity at +a : Ce*® + De~ha = Fethe = F = C + 3D.

(3) Discontinuity in ¢’ at —a : ik(Ce™ " — De'*®) — jk(Ae~*e — Be'ha) = —2ma(fe—ika 4 Betha)
= pC —D =p3(y+1)A+ B(y—1), where v = i2ma§/h2k.

(4) Discontinuity in ¢’ at +a: ikFe*® — ik(Ce*® — De~k) = —2ma (peike)
=C—-pD=(1-~)F.

add (2) and (4) : 20=F+(1—~v)F =20=(2-9)F.

To solve for ¢’ and D, { subtract (2) and (4) : 28D = F — (1 —~)F = 2D = (v/3)F.

{ add (1) and (3) : 20C =BA+B+8(y+1)A+B(y—1) =2C = (v+2)A+ (v/B)B.
subtract (1) and (3): 2D =0A+B - p3(y+1)A—B(y—1) =2D=—0A+ (2—7)B.

Equate the two expressions for 2C : (2 —v)F = (v + 2)A + (v/3)B.
Equate the two expressions for 2D : (v/3)F = —yBA+ (2 — v)B.
Solve these for ' and B, in terms of A. Multiply the first by 5(2 — ), the second by 7, and subtract:

[8(2—7)2F = B4 —7)A+~2-7)B]; [(*/B)F =—By*A+~(2-7)B].

F 4
= [82=7) =7 /BlF=B[4-7"+1]A=4A= - = @

R’k 2

Let g=1i/y = Dy

i ; F 4g
= 4k =—, >=e" Then: — = ——.
0] a, so 7y 7 b =e en: — g =)+ e

Denominator: 4g? — 4ig — 1 + cos ¢ + isin ¢ = (49> — 1 4 cos ¢) + i(sin ¢ — 4g).
|Denominator|* = (4g* — 1 + cos ¢)* + (sin ¢ — 4¢)?

= 169" + 1+ cos? ¢ — 892 — 2cos ¢ + 8g° cos ¢ + sin” ¢ — 8¢ sin ¢ + 164>
= 16g" + 8¢ + 2 + (8¢* — 2) cos ¢ — 8gsin ¢.

= 8’ where g = ik and ¢ = 4ka.
(8g% +49% + 1) + (492 — 1) cos ¢ — 4gsin ¢’ a
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Problem 2.34 (16 pts)

4pts (a)
V2mE 2m(Vo — E)

KR =

no h

= Aekt 4 Be~ikT (1 < ()
| Fe"® (z>0)

(1) Continuity of ¢y : A+ B =F.
(2) Continuity of ¢' : ik(A — B) = —kF.

} where k =

:>A+Bﬁ(AB)¢A<1+%>B<1ﬁ>.
K K

2

1+ik/w)> 14 (k/k)?
1—ik/k)2 14 (k/k)2 _

Although the wave function penetrates into the barrier, it is eventually all reflected.

4pts (b)

B
=[]

Il
(

_ [ AerT 4 Beihr (3 < 0) V2mE . \/2m(E - V)
w{Fe”I (x> 0) where k = N ;= 5 .
(1) Continuity of ¢ : A+ B = F.

(2) Continuity of ' : ik(A — B) =ilF.

:>A+B:§(A—B); A<1—§>——B(1+%>.
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R:’_z_ (L-k/W)? (k=D (k-0
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4pts ()
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From the diagram, T = P,/ P; = |F|?v;/|A|?v;, where P; is the probability of finding the incident particle
in the box corresponding to the time interval dt, and P; is the probability of finding the transmitted
particle in the associated box to the right of the barrier.

But z—: = % (from Eq. 2.98). So T = E ;VO % 2. Alternatively, from Problem 2.19:
Jizijn—kw?; Jt:%|F|2; T=§Z:'§ Zé:)g ’ E;VO.
For E < Vj, of course,
4pts (d)
For E >V, FA+BA+AE§J_FB A(;Z/a) = kal .
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Problem 2.35 (12 pts)

4pts (a)
[ Aethr 4 Be~*® (2 < 0) _V2mE | \/2m(E+ V)
Continuity of v = A+ B =F .
Continuity of ¢' = ik(A — B) = ilF

A+ B=

~ =

(A - B); A(1—§>:—B<1+§>s %?GIZ;)



40 CHAPTER 2. THE TIME-INDEPENDENT SCHRODINGER EQUATION

e |Bl_ (=0 _ (YEFTR-VEY

’A (l+k> (\/E+V0+\/E>
VIFW/E-1\"  (VIF3-1\" (2-1\* [1
:<\/1+V0/E+1) :<\/1+3+1> :(ﬁ) |9

4pts (b) The cliff is two-dimensional, and even if we pretend the car drops straight down, the potential as a function
of distance along the (crooked, but now one-dimensional) path is —mgz (with x the vertical coordinate),
as shown.

TV(X)
-V,

[ N—

4pts (c) Here Vy/E = 12/4 = 3, the same as in part (a), so R =1/9, and hence T'=|8/9 = 0.8889.

SP4 (12pts)

2pts (a)
Let the drep eccur at = 0, and the wall at z = L. Then
Aetfi® 4 Be~thiz 4 <
U(z) = Ceth2® 4 De=thr <z <L (1)
0, x>1L

with k; = V2mE/h and ky = \/2m(E + V) /h
6pts (b)

The centinuity cenditiens are that W and its derivative must be centinueus at z = 0 and
U at © = L, namely

A+B=C+D (2)

Ce*2l 4 Deih2l — ¢ (4)



From (4) we have that C = —De %%, Plugging into (2) and (3) we get

A+ B = D(1 — e %kl 5)
A—-B= —D%(l + ¢ 2ikel) ©)
" k y
(5) + (6) — 2A = D(1 _ 6—21k2L _ k_?(l + e—QleL)) (7)
(5) — (6) = 2B = D(1 — e~ 2kl 4 k—j(l t e Rikaly) ®)
B 1+ Ii_z _ e—zik2L(1 _ :_2)

8 7 —_= 1 1 9
()/()—>A 1—%_6—2ik2L(1+%) ()

Result (9) is the ratio of reflected to incident amplitude. Since the wall at L is infinitely
tall there can be no transmission and so we must have R = 1: you can check this by

et = |82
evaluating R = A’ .

4pts  (c)

The phase shift is given by

(@
tan ¢ = M

R[B/A]

B k o k k o k
7= (1 4 k—? — e~ 2ikaL (1 - ﬁ)) (1 - k—f — ekl (1 + k—j)) /[real denominator]
AT kY o 2% k)’ _
= <1 - (ﬁ) — gl (1 — k_j> — ikl (1 + k—?) +1- (f) /[real denominator
k2’ k2’ oy .
=2(1- =)~ 1+ T cos 2k L — 2zk— sin 2k L | /[real denominator]
1 01 v1

2% sin 2ko L

(1 + (’,:—f)z> cos2ko L — 1 + (’,:—f)z

tan ¢ =




