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Problem 4.24

(a)

H = 2


1
2
mv2


= mv2; |L| = 2

a

2
mv = amv, so L2 = a2m2v2, and hence H =

L2

ma2
.

But we know the eigenvalues of L2 : ℏ
2l(l + 1); or, since we usually label energies with n:

En =
ℏ

2n(n + 1)
ma2

(n = 0, 1, 2, . . . ).

(b) ψnm(θ, φ) = Y m
n (θ, φ), the ordinary spherical harmonics. The degeneracy of the nth energy level is the

number of m-values for given n: 2n + 1.

Problem 4.25

rc =
(1.6 × 10−19)2

4π(8.85 × 10−12)(9.11 × 10−31)(3.0 × 108)2
= 2.81 × 10−15 m.

L =
1
2

ℏ = Iω =


2
5
mr2

 v

r


=

2
5
mrv so

v =
5ℏ

4mr
=

(5)(1.055 × 10−34)
(4)(9.11 × 10−31)(2.81 × 10−15)

= 5.15 × 1010 m/s.

Since the speed of light is 3 × 108 m/s, a point on the equator would be going more than 100 times the speed
of light. Nope : This doesn’t look like a very realistic model for spin.

Problem 4.26

(a)

[Sx, Sy] = SxSy − SySx =
ℏ

2

4


0 1
1 0

 
0 −i
i 0


−


0 −i
i 0

 
0 1
1 0



=
ℏ

2

4


i 0
0 −i


−


−i 0
0 i


=

ℏ
2

4


2i 0
0 −2i


= iℏ

ℏ

2


1 0
0 −1


= iℏSz. X

(b)

σxσx =


1 0
0 1


= 1 = σyσy = σzσz, so σjσj = 1 for j = x, y, or z.

σxσy =


i 0
0 −i


= iσz; σyσz =


0 i
i 0


= iσx; σzσx =


0 1
−1 0


= iσy;

σyσx =

−i 0
0 i


= −iσz; σzσy =


0 −i
−i 0


= −iσx; σxσz =


0 −1
1 0


= −iσy.

Equation 4.153 packages all this in a single formula. X
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Problem 5.4

(a)

1 =


|ψ±|2d3r1d3r2

= |A|2


[ψa(r1)ψb(r2) ± ψb(r1)ψa(r2)]
∗ [ψa(r1)ψb(r2) ± ψb(r1)ψa(r2)] d3r1d3r2

= |A|2


|ψa(r1)|2d3r1


|ψb(r2)|2d3r2 ±


ψa(r1)∗ψb(r1)d3r1


ψb(r2)∗ψa(r2)d3r2

±


ψb(r1)∗ψa(r1)d3r1


ψa(r2)∗ψb(r2)d3r2 +


|ψb(r1)|2d3r1


|ψa(r2)|2d3r2



= |A|2(1 · 1 ± 0 · 0 ± 0 · 0 + 1 · 1) = 2|A|2 =⇒ A = 1/
√

2.

(b)

1 = |A|2


[2ψa(r1)ψa(r2)]
∗ [2ψa(r1)ψa(r2)] d3r1d3r2

= 4|A|2


|ψa(r1)|2d3r1


|ψa(r2)|2d3r2 = 4|A|2. A = 1/2.

Problem 5.5

(a)

− ℏ
2

2m

∂2ψ

∂x2
1

− ℏ
2

2m

∂2ψ

∂x2
2

= Eψ (for 0 ≤ x1, x2 ≤ a, otherwise ψ = 0).

ψ =
√

2
a


sin

πx1

a


sin


2πx2

a


− sin


2πx1

a


sin

πx2

a



d2ψ

dx2
1

=
√

2
a


−

π

a

2

sin
πx1

a


sin


2πx2

a


+


2π

a

2

sin


2πx1

a


sin

πx2

a



d2ψ

dx2
2

=
√

2
a


−


2π

a

2

sin
πx1

a


sin


2πx2

a


+

π

a

2

sin


2πx1

a


sin

πx2

a


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
d2ψ

dx2
1

+
d2ψ

dx2
2


= −

π

a

2

+


2π

a

2


ψ = −5
π2

a2
ψ,

− ℏ
2

2m


d2ψ

dx2
1

+
d2ψ

dx2
2


=

5π2
ℏ

2

2ma2
ψ = Eψ, with E =

5π2
ℏ

2

2ma2
= 5K. X

(b) Distinguishable:

ψ22 = (2/a) sin (2πx1/a) sin (2πx2/a) , with E22 = 8K (nondegenerate).

ψ13 = (2/a) sin (πx1/a) sin (3πx2/a)
ψ31 = (2/a) sin (3πx1/a) sin (πx2/a)

}
, with E13 = E31 = 10K (doubly degenerate).

Identical Bosons:

ψ22 = (2/a) sin (2πx1/a) sin (2πx2/a), E22 = 8K (nondegenerate).

ψ13 = (
√

2/a) [sin (πx1/a) sin (3πx2/a) + sin (3πx1/a) sin (πx2/a)], E13 = 10K (nondegenerate).

Identical Fermions:

ψ13 = (
√

2/a)

sin

(
πx1
a

)
sin

(
3πx2

a

)
− sin

(
3πx1

a

)
sin

(
πx2
a

)
, E13 = 10K (nondegenerate).

ψ23 = (
√

2/a)

sin

(
2πx1

a

)
sin

(
3πx2

a

)
− sin

(
3πx1

a

)
sin

(
2πx2

a

)
, E23 = 13K (nondegenerate).

Problem 5.6

(a) Use Eq. 5.19 and Problem 2.4, with xn = a/2 and x2n = a2


1
3 − 1

2(nπ)2


.

(x1 − x2)2 = a2


1
3 − 1

2(nπ)2


+ a2


1
3 − 1

2(mπ)2


− 2 · a

2 · a
2 = a2


1
6
− 1

2π2


1
n2

+
1

m2


.

(b) xmn = 2
a

 a

0
x sin

(
mπ
a x

)
sin

(
nπ
a x

)
dx = 1

a

 a

0
x

[
cos


(m−n)π

a x

− cos


(m+n)π

a x
]

dx

= 1
a


a

(m−n)π

2

cos


(m−n)π
a x


+


ax

(m−n)π


sin


(m−n)π

a x


−


a
(m+n)π

2

cos


(m+n)π
a x


−


ax

(m+n)π


sin


(m+n)π

a x
∣∣∣∣

a

0

= 1
a


a

(m−n)π

2

(cos[(m − n)π] − 1) −


a
(m+n)π

2

(cos[(m + n)π] − 1)


.

But cos[(m ± n)π] = (−1)m+n, so

xmn =
a

π2


(−1)m+n − 1

 
1

(m − n)2
− 1

(m + n)2


=

{
a(−8mn)

π2(m2−n2)2 , if m and n have opposite parity,
0, if m and n have same parity.

So Eq. 5.21 ⇒ (x1 − x2)2 = a2


1
6
− 1

2π2


1
n2

+
1

m2


− 128a2m2n2

π4(m2 − n2)4
.

(The last term is present only when m, n have opposite parity.)
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