

Homework Set #1

*Problem 1.5 Consider the wave function

$$\Psi(x, t) = Ae^{-\lambda|x|}e^{-i\omega t},$$

where A , λ , and ω are positive real constants. (We'll see in Chapter 2 what potential (V) actually produces such a wave function.)

- (a) Normalize Ψ .
- (b) Determine the expectation values of x and x^2 .
- (c) Find the standard deviation of x . Sketch the graph of $|\Psi|^2$, as a function of x , and mark the points $(\langle x \rangle + \sigma)$ and $(\langle x \rangle - \sigma)$, to illustrate the sense in which σ represents the "spread" in x . What is the probability that the particle would be found outside this range?

See Additional Problem on Next Page

Problem 1.17 A particle is represented (at time $t = 0$) by the wave function

$$\Psi(x, 0) = \begin{cases} A(a^2 - x^2), & \text{if } -a \leq x \leq +a, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Determine the normalization constant A .
- (b) What is the expectation value of x (at time $t = 0$)?
- (c) What is the expectation value of p (at time $t = 0$)? (Note that you *cannot* get it from $p = md\langle x \rangle/dt$. Why not?)
- (d) Find the expectation value of x^2 .
- (e) Find the expectation value of p^2 .
- (f) Find the uncertainty in x (σ_x).
- (g) Find the uncertainty in p (σ_p).
- (h) Check that your results are consistent with the uncertainty principle.