
Phys. 2b 2026, Week 1 Lecture Notes (Lectures 1 & 2) (1/6-8/2026)

↪→ Welcome to Entanglement!

See NOVA epispode video clip: Einstein’s Quantum Riddle 1:40 - 3:55 (first aired 1/17/2019)
(posted on CANVAS)

Key Concepts:
1. What is QM?

2. Why do we need QM?

Course details
Most discussed on course webpage on Canvas
HW=50%, 2xQuiz=25%, F=25%
HW: 3-4 problems/wk; SP (Special Probs) ⇒ from previous Exams: BP = Book Probs.
Text: Griffiths 3nd edition
This class covers first 4 chapters of Griffiths (Most of NRQM = Non-Relativistic Quantum
Mechanics) + some of chap. 5

Goals of 2b

� Learn how to apply basic math of QM: Probability Concepts & PDE = Schrodinger Eq.

� Particles as waves leads to ”Entanglement” & Quantum Computing ...

What is QM?
QM is : Description of free particle in motion when energies and/or distances are very small.
How small is small? ⇒ h is Planck’s Constant, h = 6.6 · 10−34Joule-sec

↪→ Note: dropping Ping-Pong Ball from 2 m gives ball ∼ 1 Joule in ∼ 1 sec

What happens at much smaller scales, like 10−34Joule-sec ??
⇒ very bizarre things, not deterministic ...

Example:
Consider: Particle with Force ⇒ measure v⃗, x⃗
Classically we can predict v⃗(t), x⃗(t) if given initial conditions and forces
→ QM says no way!! Instead it says:
we can predict probability of obtaining a given value from measurement of v⃗ or x⃗→ Huh??
or we say it predicts the distribution of measurements of an ensemble of identically
prepared systems.

Why do we need QM?:
Because Classical Physics had some key failures that were identified ∼ 125 years ago
And ... QM works! → agrees with measurement & → has survived 100 yrs of study
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Classical Failures:
Three key failures of Classical physics led to the development of Quantum Theory:
I. Black-Body Radiation - BBR
II. Photoelectric Effect
III. Atomic spectra

Classical Failure I. BBR:
• Ideal BB is a perfect absorber (i.e. no reflections) and emitter of radiation.
Approximate examples:

hot coals in a wood fire
The sun, human body (what about the moon? - No! - mostly reflection)

Demo: Three boxes with small hole ...

→ Experimental information at the beginning of the 20th Century:

Spectral distribution of radiation from BB depends only on temperature
Spectral Energy density ⇒ u(λ, T ) ⇒ Energy

Unit−volume unit−wavelength

Experimental info is given by curves below for different temperatures T :

Demos: Big Light Bulb has varying colors
You can also play with BBR via PHET webapp:
https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum en.html

=⇒ But classical “prediction”, based on thermodynamics and Classical E&M is a disaster ...
In particular at short wavelength, compared with experiment (see figure below) the theory
goes to infinity = Ultraviolet Catastrophe
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Classical Failure II. Atomic Spectra

→ Experimental Observations:

1. Tube of gas with electric discharge inside produces light at well-defined frequencies (quan-
tized frequencies, not continuum)

2. Different gases give different frequencies ⇒ all quantized

Demo: Light bulbs with grating for H & Ne

But atoms have e− and positive nucleus (e.g., proton for H)
if e− “orbits” proton, then classically all orbits are possible
∴ no discrete lines

e−

+

Classical Failure III. Photoelectric Effect
Experiment of Hertz (1887):

UV light

A

Ammeter

Polished metal plates emit electrons when irradiated by UV light.
Energy of EM wave apparently liberates electrons.

Recall that Classical EM theory says that energy density in EM wave E/V ∝ |E⃗|2,
which is independent of wavelength
But classical theory FAILS
→ since we see that electron emission depends on wavelength.
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How to fix these failures??

Quantized Repair I. BBR

→ Enter Max Planck (1900):
Planck “guessed” a high frequency (or low wavelength) cut-off (á là e−βν) for ⟨Energy⟩/mode
could fix the problem:

Planck’s Postulate:
• For each mode, energy is absorbed and emitted only in quantized amounts: E = hν,

i.e. harmonic oscillations (of field? or walls?) occupy only discrete states

En = nhν, n = 0, 1, 2, 3, . . .

⇒ Planck distribution is a resounding success
↪→ (see BBR handout on CANVAS if you want details)
but...
What is this En = nhν? Is it a mathematical artifact? Are the walls of BB quantized
oscillators or is there something else? (see below)

Quantized Repair II. Atomic Spectra

→ Bohr guessed a Quantized Model (1913)
Coulomb force provides centripetal acceleration for “orbit”
But! ... Orbits are quantized with discrete values
↪→ (See SP1 in HW set 1)

Quantized Repair III. Photoelectric Effect

Enter Einstein ...

Einstein explained this effect in 1905, by using E = nhν for the EM field (i.e. photons)
This explains source of BBR quantization = photons!
↪→ see posted handout on Canvas for details if interested.

But all of above repairs indicate that ”quantization” is important. But this is only a hint
Not a Theory! → see next time ...
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Key Concepts
1. Matter Waves
2. The Wave Function (WF)?
3. Heisenberg’s Uncertainty Principle (HUP)

From Early Quantized Models to Modern Quantum Theory
This required four major Breakthroughs

Breakthrough I: - Matter Waves
In 1923 PhD thesis, deBroglie tried to explain Atomic spectra quantization by postulating
“Matter Waves”’
→ de Broglie asked: what if p = h

λ
held for e−, then can get standing waves around proton:

+

e−

standing wave has nλ = 2πr (Figure has n = 6, ground state has n = 1)
or nh

p
= 2πr ⇒ pr = nh

2π
⇒ |L⃗| = nℏ ⇒ Consistent with Bohr’s Model!! (see HW1:SP1)

Thus he proposed all matter possesses wave-like properties:

λ = h
p

⇒ de Broglie wavelength

→ 1927 Davisson and Germer confirmed λ = h
p
for electrons via diffraction from crystals.

↪→ See Demo

Breakthrough II: - Born Postulate (1925-26)

If, assuming matter waves, particle is a wave with wave amplitude ψ(x, t)
∴ Postulate:
→The probability of finding a particle between x and x+ dx at time t, aka its
probability distribution, is the squared modulus of the wave amplitude |ψ|2 = ψ∗ψdx

Note: ψ∗ is complex conjugate of ψ. Why complex? see next week
This suggests that probability is key to Quantum Mechanics

Particle described by Wave Function ... What does this mean?

1. If particle is constrained to exist within some bounds (Volume = V ) then∫
V

|ψ(r⃗)|2dxdydz = 1 ; |ψ|2 = ψ∗ψ

Using the above integral, ψ(r⃗) is said to be normalized

2. Wave Function contains all that can be known about the particle, but ...

3. Wave Function itself CAN’T be measured, only ψ∗ψ is measureable
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Breakthrough III. Wave Function satisfies Schrodinger Equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ V ψ

This equation governs the time evolution of the Wave Function and allows superposition
(since it’s a linear equation) such that if ψ1 and ψ2 are both solutions of Schrodinger Equation,
then ψ1 + ψ2 is also a solution

→ Superposition of Wave Functions implies that wave interference is possible

Experiment confirms this via electron double slit interference experiment
→ see picture in Text Chap. 1 Fig. 1.4.

Works even when only one electron goes through slits at a time:
⇒ interference pattern is only visible after many e− are detected → but what’s interfering?
⇒ electron interferes with itself!

DEMO: Electron diffraction from crystal = next lecture

Breakthrough IV. Heisenberg’s Uncertainty Principle (HUP)

(For now this is only a plausibility argument for HUP. Derivation of it is in Chap. 3)

Statistical nature of ψ∗ψ as a probability density indicates that if we measure the position
of an ensemble of identically-prepared systems, then we don’t get the same answer each time.
Instead we get a distribution of answers xi
Then we can define a mean

⟨x⟩ ≡
N∑
i=1

xiPi wherePi is probability of gettingxi

and a standard deviation

∆x = σx(Griffiths) = r.m.s. deviation or uncertainty ≡
√

⟨(x− ⟨x⟩)2⟩

Note ∆x2 = ⟨x2 − 2x⟨x⟩+ ⟨x⟩2⟩ = ⟨x2⟩ − ⟨x⟩2

⇒ then from Ph2a, for classical waves, we know that:

∆x∆k
>∼ 1

∆ x

 λ=  2π
k

____

Thus since λ = 2π/k and λ = h/p (from deBroglie)
we have k = 2πp/h, which suggests

∆x
2π∆p

h

>∼ 1, or ∆x∆p
>∼ h

2π
≡ ℏ

This led Heisenberg to postulate the H.U.P.
But how do we calculate ∆p?
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Consider Mathematical Operators: if Â is an operator, then Âf(x) = g(x)
e.g. if Â = β ∂

∂x
, then Âψ = β ∂ψ

∂x

↪→ In fact, all quantum observables can be described by operators (see Ch 3)

Text shows that p̂ = −iℏ ∂
∂x

= momentum operator, while position operator is x̂ = x.
And for quantum system we can define an average value or a so-called ”expectation value”:

⟨x⟩ =
∫ ∞

−∞
ψ∗xψdx

Likewise, we can associate a mean ⟨A⟩ & uncertainty ∆A with any physical observable Â
e.g.,

⟨px⟩ =
∫ ∞

−∞
ψ∗

(
−iℏ ∂

∂x

)
ψdx

and

∆px =
√
⟨(px − ⟨px⟩)2⟩

Rigorous derivation (see Ch 3 in text) gives:

∆x∆px ≥
ℏ
2

as well as ...

∆y∆py ≥
ℏ
2

∆z∆pz ≥
ℏ
2

and there are even more (see later)
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