Phys. 2b 2026, Week 3 Lecture Notes (Lectures 5 & 6) (1/20-22/2026)

Key Concepts
1. Free Particle Schrodinger Solution
2. Delta-Function Potential §(z)

I1. Free Particle in One Dimension

Free particle has H= % thus the time-independent Schrodinger equation is
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or rewriting d;/;k =— 7;; U = —k*y,

where 1 (x) are the eigenstates. This is easy to solve via:

Y = Acos(kx) + Bsin(kx) is a general soln, but these look like standing waves.

To describe moving particles we want travelling waves, so a better general soln is:
U, = Ae™*™ 4+ Be ™ where
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is any real number, and £ =

To see the travelling wave nature of these solns we include the time dependence term e *#¢/":

e(z,t) = Ae*re="% 4 Be~thre= "%
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free particle moving in positive z direction = moving in negative x direction
272
where we have used F = % These seem to be reasonable solns ...
But!!

— We can’t normalize these 1, since ffooo Yippdr includes terms like A*A ffooo dx = oo.
This occurs because the exponential terms times their complex conjugate is = 1.

Thus ¢ can’t be real physical states (since they don’t have finite total probability)

But we know that real particles can be localized: in your hand or in the Solar System.

Thus, even though v are not physical wavefunctions, superpositions of ¢, can produce
physical states and localized particles = called wave packets.

Since energies and k values are continuous we should take the discrete sums from earlier
and convert them to integrals. Thus arbitrary free particle solutions should look like:
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where the integral from —oo to oo allows the ¢(k) to automatically include both the “A;”
and the “B,” terms, and the v/27 is inserted for ”convenience” ...
— since it allows us a connection to Fourier transforms.

But how do we calculate ¢(k) from a given initial state ¥ (z,0) = ¥(x)?

To do so we set t = 0 in above equation and given ¥ (z,0) = ¢(x)
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we can then solve for ¢(k) via a Fourier transform
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Note: ¢(k) is sometimes called the k-space wave function such that ¢*(k)¢(k)dk is the
probability of observing a state with wave number (k) between k and k + dk.

And since p = hk and E = h?k?/2m = p?/2m, we can also define the momentum space wave
function ¢(p). Then since p = hk we have ¢(p) = \/Lﬁgzﬁ(k)

. “Delta-function” - §(x), and the ¢(x)-Potential
The properties of the Dirac Delta function 6(z)
(Mathematicians call this a distribution) -

are defined by an integral:

d(z) =0if 2 # 0 and / d(z) f(x)dx = f(0)
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Consider now a finite well with Vj — —oo,a — 0
but with Vya = constant — V' (z) = —Vpad(z).

Think of Vya as a varying strength for the potential.
And we expect the energy eigenvalues to depend on
this quantity.

There are, very likely, lots of states with £ > 0 A
but these will be travelling waves (see next week).
Here we ask: are there bound states for this potential?

To solve these types of problems we usually break up the space around the localized potential
into regions to solve the TISE eigenvalue equation: Hy = Ev
- —h? d*y

Hy = om di? Voad(x)y = Ev

and then use 3 steps to solve (The Recipe):



A. Guess the solution
For x # 0 note that
Diff. Eq. is L% = — 2B = 2m|E‘w = k21) since £ < 0:
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Y = Be™™®; for x > 0.

B. Next we match the wavefunction at x = 0, since we need a continuous ¥ (z):
¥r1(0) = ¢;11(0) = A= B (and from normalization/w*wdx =1, we get: A=+/k).

To find allowed values of k and thus the energy eigenvalues we need another constraint on the
wave function.

What about dw? Clearly, this can’t be continuous, since there’s a divergence at x = 0

due to the ¢- functlon However, due to the properties of §(z) we can constrain d¢ by
noting that
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Then since the Schrodinger Eq. gives: 32775 =4 (&) = 2 [Vias(x) — |E[] 1), the left side is:
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since ¥(0) = A and |E|[z¢(x )]|0+ = 0.

C. Now work out the algebra to solve for the eigenenergies

We can rewrite Eq. 1 with the new left-hand side:

2mVpa dirr dir
— < FL2 )A: %‘xZO‘*_E‘x:O* :A(—H)—BK:—2AK
giving:
mVya
=z

and there is only a single energy eigenvalue, with energy:
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There thus exists one and only one bound state for a §(x)-well. See figure showing ¥ (x) 1



Key Concepts
1. Bound States in a Finite Well
2. Introduction to Scattering States in 1D

1. Finite Square Well

Consider the finite square well:

A V(X) w(x)

ground state

X=—a

e

V= -V, 1% excited state

For E > 0 we again have continuous eigenstates (“plane waves” - see later), but ...
For E < 0 we have a finite number of discrete bound states.
We can use the energy eigenstates of the infinite well as a rough guess for what the ground

and first excited states look like within the well and then make them smoothly go to zero
outside of well — see Fig above for ¢(x).

Thus the ground state is an "even” function where

bz <0) =9¢(z>0)

and the 1st excited state is an odd function where
Y(x < 0)=—y(z>0).

The exact general solutions for the energy eigenstates are from H Un = Ephy:
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Use the Recipe for solving these types of problems:

— Vovin = E;, , inside the well

= F,, , outside the well

A. First we “guess” the exact solns for these simple Diff Eqs:

Vi = Acos(kz) for the even solns inside the well
Vi = Bsin(kz) for the odd solns inside the well
VYour = Ce™ + De™"* for |z| > a , outside the well

with k£ and x defined via:



h2 k2 h2 K2
F=——-Vj=—
2m 0 2m

which follows from H v = E1.
Note that since £ < 0 for bound states we have k and x = real number. This gives:

Vi, = oscillatory solutions [cos(kx) or sin(kx)]

our = exponentially decaying functions (Ce™ for x < —a and De™"* for x > a)

B. Match the wave function and its first derivative at the points (x = +a) where the
potential changes - we’ll do it for the even solns (only need to worry about x = +a); thus:

WYin(a) = Your(a) which gives: Acos(ka) = Ce™ and

dwzn o d’l/}out

du |o=a = WL{;:& giving: — Aksin(ka) = —Ck

Then dividing the bottom equation by the top one we get:

ktan(ka) = k — a transcendental equation
C. Solving this equation simultaneously with the energy equation from above
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gives the eigenenergies
< this requires a computer or graphical soln (see text).
In particular, note that if either the well depth or width is “too small” there will only be one
bound state (= the even ground state). We can see this, since as Vi — 0, the first excited
state (the odd sin function) has only 1/2 of a wavelength inside the well such that

2a:§; or )\:4a:2%; l{::;—a
But to be a bound state we must also have £ < 0 such that the first excited state
(or any excited state for that matter) will not exist if
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since k = 7/2a.
Introduction to 1-D Scattering States

Why Discuss scattering?
— Essential tool in many branches of physics:



Condensed Matter Physics = neutron-materials, X-ray-materials

Nuclear Physics = p-Nucleus, e”-nucleus

Atomic Physics = e -Atom, Laser-Atom

Particle Physics = p—p, e~ —e™
e Astrophysics = Cosmic Microwave Background Radiation-e~

Scattering reveals information on elementary force laws and the structure of objects. We will
consider only elastic scattering (energy and number of particles are conserved).

Consider a localized potential 4 V()

= V() #0, a<z<b
— 0, |z| = o
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Now consider a wave packet incident on a localized V' (z).
The packet can “scatter” from potential (like e~-Atom collision)

A
V)
t<ty =
Wave packet incident r
from the left A
A
V&)
t>ty =
May get both a L P NN
reflected and a j\ L
transmitted wave packet. /X\=

We will solve a simpler problem: “shooting” a beam of particles at the potential and
determining the form of the wave function far from the potential. By a beam of particles,
we mean plane waves [a.k.a. momentum eigenstates: 1 (z,t) = Ael(For=wt)],

— These solutions can then be superposed to create arbitrary wave packets.

To characterize the scattering of a beam, it is useful to define a particle flux J,(z)

_( h L0y oy
JF(%)( a—x‘aﬂ)

— text calls this “Probability Current”.

J, has dimensions of “particles/sec”.



Example: Consider Particle beam moving towards +ux:

1/}(1,’ t) — )\%ei(koxfwt)
where |A|? is number of particles per unit length. Then:
h hkq

Jp = ——(N\)[iko — (—iko)] = A— = Avy . which has units of particles/sec = flux!
2mi m



