
Phys. 2b 2026, Week 3 Lecture Notes (Lectures 5 & 6) (1/20-22/2026)

Key Concepts
1. Free Particle Schrödinger Solution
2. Delta-Function Potential δ(x)

II. Free Particle in One Dimension

Free particle has Ĥ = p̂2

2m
thus the time-independent Schrödinger equation is

− ℏ2

2m

d2ψk
dx2

= Eψk

or rewriting
d2ψk
dx2

= −2mE

ℏ2
ψk ≡ −k2ψk

where ψk(x) are the eigenstates. This is easy to solve via:

ψk = A cos(kx) +B sin(kx) is a general soln, but these look like standing waves.

To describe moving particles we want travelling waves, so a better general soln is:

ψk = Aeikx +Be−ikx where

k =
√

2mE
ℏ2 is any real number, and E = ℏ2k2

2m
.

To see the travelling wave nature of these solns we include the time dependence term e−iEt/ℏ:

ψk(x, t) = Aeikxe−
itE
ℏ +Be−ikxe−

itE
ℏ

= Aei(kx−
ℏk2t
2m

)︸ ︷︷ ︸
free particle moving in positive x direction

+ Be−i(kx+
ℏk2t
2m

)︸ ︷︷ ︸
moving in negative x direction

where we have used E = ℏ2k2
2m

. These seem to be reasonable solns ...

But!!

↪→ We can’t normalize these ψk since
∫∞
−∞ ψ∗

kψkdx includes terms like A∗A
∫∞
−∞ dx = ∞.

This occurs because the exponential terms times their complex conjugate is = 1.

Thus ψk can’t be real physical states (since they don’t have finite total probability)

But we know that real particles can be localized: in your hand or in the Solar System.

Thus, even though ψk are not physical wavefunctions, superpositions of ψk can produce
physical states and localized particles ⇒ called wave packets.

Since energies and k values are continuous we should take the discrete sums from earlier
and convert them to integrals. Thus arbitrary free particle solutions should look like:

ψ(x, t)“ ≡′′
∞∑
k=0

Ake
i(kx− ℏk2t

2m
) +Bke

i(−kx− ℏk2t
2m

) ⇒ 1√
2π

∫ ∞

−∞
ϕ(k)ei(kx−

ℏk2t
2m

)dk
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where the integral from −∞ to ∞ allows the ϕ(k) to automatically include both the “Ak”
and the “Bk” terms, and the

√
2π is inserted for ”convenience” ...

↪→ since it allows us a connection to Fourier transforms.

But how do we calculate ϕ(k) from a given initial state ψ(x, 0) = ψ(x)?

To do so we set t = 0 in above equation and given ψ(x, 0) = ψ(x)

ψ(x) =
1√
2π

∫ ∞

−∞
ϕ(k)eikxdk

we can then solve for ϕ(k) via a Fourier transform

ϕ(k) =
1√
2π

∫ ∞

−∞
ψ(x, 0)e−ikxdx

Note: ϕ(k) is sometimes called the k-space wave function such that ϕ∗(k)ϕ(k)dk is the
probability of observing a state with wave number (k) between k and k + dk.

And since p = ℏk and E = ℏ2k2/2m = p2/2m, we can also define the momentum space wave
function ϕ(p). Then since p = ℏk we have ϕ(p) = 1√

ℏϕ(k).

2. “Delta-function” - δ(x), and the δ(x)-Potential

The properties of the Dirac Delta function δ(x)
(Mathematicians call this a distribution) -
are defined by an integral:

δ(x) = 0 if x ̸= 0 and

∫ ∞

−∞
δ(x)f(x)dx = f(0)

Consider now a finite well with V0 → −∞, a→ 0
but with V0a = constant → V (x) = −V0aδ(x).

Think of V0a as a varying strength for the potential.
And we expect the energy eigenvalues to depend on
this quantity.

V(x)

x

a

V0

I II

There are, very likely, lots of states with E > 0
but these will be travelling waves (see next week).
Here we ask: are there bound states for this potential?

To solve these types of problems we usually break up the space around the localized potential
into regions to solve the TISE eigenvalue equation: Ĥψ = Eψ

Ĥψ =
−ℏ2

2m

d2ψ

dx2
− V0aδ(x)ψ = Eψ

and then use 3 steps to solve (The Recipe):
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A. Guess the solution
For x ̸= 0 note that
Diff. Eq. is d2ψ

dx2
= −2mE

ℏ2 ψ = 2m|E|
ℏ2 ψ = κ2ψ since E < 0:

ψI = Ae+κx; for x < 0 with κ2 = −2mE
ℏ2 = 2m|E|

ℏ2 , κ > 0 = real number
ψII = Be−κx; for x > 0.

B. Next we match the wavefunction at x = 0, since we need a continuous ψ(x):

ψI(0) = ψII(0) ⇒ A = B (and from normalization

∫
ψ∗ψdx = 1 , we get: A =

√
κ).

To find allowed values of κ and thus the energy eigenvalues we need another constraint on the
wave function.

What about dψ
dx
? Clearly, this can’t be continuous, since there’s a divergence at x = 0

due to the δ-function. However, due to the properties of δ(x) we can constrain dψ
dx

by
noting that∫ 0+

0−
dx

d

dx

(
dψ

dx

)
=
dψII
dx

∣∣
x=0+

− dψI
dx

∣∣
x=0−

Eq. 1

Then since the Schrodinger Eq. gives: d2ψ
dx2

= d
dx

(
dψ
dx

)
= −2m

ℏ2 [V0aδ(x)− |E|]ψ, the left side is:∫ 0+

0−
dx

d

dx

(
dψ

dx

)
= −

∫ 0+

0−
dx

{
2m

ℏ2
[V0aδ(x)− |E|]ψ(x)

}

= −
(
2mV0a

ℏ2

)
ψ(0) + |E|[xψ(x)]|0+0− = −

(
2mV0a

ℏ2

)
A.

since ψ(0) = A and |E|[xψ(x)]|0+0− = 0.

C. Now work out the algebra to solve for the eigenenergies

We can rewrite Eq. 1 with the new left-hand side:

−
(
2mV0a

ℏ2

)
A =

dψII
dx

∣∣
x=0+

− dψI
dx

∣∣
x=0−

= A(−κ)−Bκ = −2Aκ

giving:

κ =
mV0a

ℏ2
and there is only a single energy eigenvalue, with energy:

⇒ E = −ℏ2κ2

2m
= − ℏ2

2m

(
mV0a

ℏ2

)2

= −mV
2
0 a

2

2ℏ2

There thus exists one and only one bound state for a δ(x)-well. See figure showing ψ(x) ↑

1
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Key Concepts
1. Bound States in a Finite Well
2. Introduction to Scattering States in 1D

1. Finite Square Well

Consider the finite square well:

V=  -V0

x=−a x=a

V(x)

x
x

ground state

1    excited state

ψ(x)  

x=−a

x=a

st

For E > 0 we again have continuous eigenstates (“plane waves” - see later), but ...

For E < 0 we have a finite number of discrete bound states.

We can use the energy eigenstates of the infinite well as a rough guess for what the ground
and first excited states look like within the well and then make them smoothly go to zero
outside of well → see Fig above for ψ(x).

Thus the ground state is an ”even” function where
ψ(x < 0) = ψ(x > 0)
and the 1st excited state is an odd function where
ψ(x < 0) = −ψ(x > 0).

The exact general solutions for the energy eigenstates are from Ĥψn = Enψn:

−ℏ2

2m

d2ψin
dx2

− V0ψin = Eψin , inside the well

−ℏ2

2m

d2ψout
dx2

= Eψout , outside the well

Use the Recipe for solving these types of problems:

A. First we “guess” the exact solns for these simple Diff Eqs:

ψin = Acos(kx) for the even solns inside the well

ψin = Bsin(kx) for the odd solns inside the well

ψout = Ceκx +De−κx for |x| ≥ a , outside the well

with k and κ defined via:
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E =
ℏ2k2

2m
− V0 = −ℏ2κ2

2m

which follows from Ĥψ = Eψ.

Note that since E < 0 for bound states we have k and κ = real number. This gives:

ψin = oscillatory solutions [cos(kx) or sin(kx)]

ψout = exponentially decaying functions (Ceκx for x < −a and De−κx for x > a)

B. Match the wave function and its first derivative at the points (x = ±a) where the
potential changes - we’ll do it for the even solns (only need to worry about x = +a); thus:

ψin(a) = ψout(a) which gives: Acos(ka) = Ceκa and

dψin
dx

|x=a =
dψout
dx

|x=a giving: − Aksin(ka) = −Cκκa

Then dividing the bottom equation by the top one we get:

ktan(ka) = κ → a transcendental equation

C. Solving this equation simultaneously with the energy equation from above

ℏ2k2

2m
− V0 = −ℏ2κ2

2m

gives the eigenenergies
↪→ this requires a computer or graphical soln (see text).

In particular, note that if either the well depth or width is “too small” there will only be one
bound state (= the even ground state). We can see this, since as V0 → 0, the first excited
state (the odd sin function) has only 1/2 of a wavelength inside the well such that

2a =
λ

2
; or λ = 4a =

2π

k
; k =

π

2a

But to be a bound state we must also have E < 0 such that the first excited state
(or any excited state for that matter) will not exist if

ℏ2k2

2m
> |V0| ; or

√
2ma2V0

ℏ2
<
π

2
, or a2V0 <

π2ℏ2

8m

since k = π/2a.

Introduction to 1-D Scattering States

Why Discuss scattering?
↪→ Essential tool in many branches of physics:
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� Condensed Matter Physics ⇒ neutron-materials, X-ray-materials

� Nuclear Physics ⇒ p-Nucleus, e−-nucleus

� Atomic Physics ⇒ e−-Atom, Laser-Atom

� Particle Physics ⇒ p− p̄, e− − e+

� Astrophysics ⇒ Cosmic Microwave Background Radiation-e−

Scattering reveals information on elementary force laws and the structure of objects. We will
consider only elastic scattering (energy and number of particles are conserved).

Consider a localized potential
⇒ V (x) ̸= 0, a ≤ x ≤ b

→ 0, |x| → ∞

V(x)

x

Now consider a wave packet incident on a localized V (x).
The packet can “scatter” from potential (like e−-Atom collision)

V(x)

x

V(x)

x

p

p
p

t < t0 ⇒
Wave packet incident
from the left

t > t0 ⇒
May get both a
reflected and a
transmitted wave packet.

We will solve a simpler problem: “shooting” a beam of particles at the potential and
determining the form of the wave function far from the potential. By a beam of particles,
we mean plane waves [a.k.a. momentum eigenstates: ψ(x, t) = Aei(k0x−ωt)].

↪→ These solutions can then be superposed to create arbitrary wave packets.

To characterize the scattering of a beam, it is useful to define a particle flux Jx(x)

Jx ≡
(

ℏ
2mi

)(
ψ∗∂ψ

∂x
− ∂ψ∗

∂x
ψ

)
↪→ text calls this “Probability Current”.

Jx has dimensions of “particles/sec”.
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Example: Consider Particle beam moving towards +x:

ψ(x, t) = λ
1
2 ei(k0x−ωt)

where |λ|2 is number of particles per unit length. Then:

Jx =
ℏ

2mi
(λ)[ik0 − (−ik0)] = λ

ℏk0
m

= λv0 . which has units of particles/sec = flux!
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