

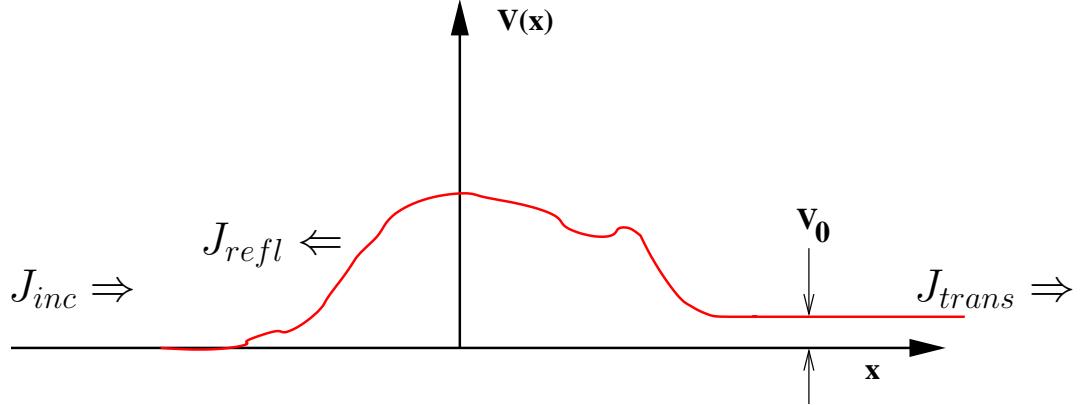
Key Concepts

1. Reflection and Transmission in 1D Scattering
2. 1D-Step Barrier Solution

Solving 1D Scattering Problems:

Consider a beam of particles incident from the left on a localized potential bump.

Look for solutions of the form:



Can use particle flux $J_x(x)$ from last time as experimental QM observable

Extract: $J_{incident}$, $J_{reflected}$, $J_{transmitted}$

First “guess” solutions to $\hat{H}\psi = E\psi$ for $x \rightarrow -\infty$, $x \rightarrow +\infty$

solution for $x \rightarrow -\infty$ $\begin{cases} \psi_{inc} = Ae^{i(k_1 x - \omega t)}; \text{ with } p_{inc} = \hbar k_1, \text{ plane wave to the right} \\ \psi_{refl} = Be^{i(-k_1 x - \omega t)}; \text{ with } p_{refl} = -\hbar k_1, \text{ plane wave to the left} \end{cases}$

solution for $x \rightarrow +\infty$ $\psi_{trans} = Ce^{i(k_2 x - \omega t)}; \text{ with } p_{trans} = \hbar k_2, \text{ plane wave to the right}$

For a given energy E (or k_1) and assuming that $\hat{H} \neq H(t)$, we have

$$\text{for } x \rightarrow -\infty; \quad \hat{H}\psi = \hat{H}(\psi_{inc} + \psi_{refl}) = E(\psi_{inc} + \psi_{refl}) \Rightarrow \frac{\hbar^2 k_1^2}{2m} = E$$

$$\text{for } x \rightarrow +\infty; \quad \hat{H}\psi = \hat{H}\psi_{trans} = E\psi_{trans} \Rightarrow \frac{\hbar^2 k_2^2}{2m} + V_0 = E$$

If $E > V_0$ then k_2 is real (for $E < V_0$, see later).

Now can calculate J_{inc} , J_{refl} , J_{trans} via

$$J_x \equiv \left(\frac{\hbar}{2mi} \right) \left(\psi^* \frac{\partial \psi}{\partial x} - \frac{\partial \psi^*}{\partial x} \psi \right)$$

Using the above solutions we have

$$J_{inc} = \frac{-i\hbar}{2m} (2ik_1) |A|^2 = \frac{\hbar k_1}{m} |A|^2$$

$$J_{refl} = \frac{-i\hbar}{2m}(-2ik_1)|B|^2 = -\frac{\hbar k_1}{m}|B|^2$$

$$J_{trans} = \frac{-i\hbar}{2m}(2ik_2)|C|^2 = \frac{\hbar k_2}{m}|C|^2 ; \quad \text{valid only for } E > V_0 \quad (\text{see later for } E < V_0)$$

Now define the Transmission coefficient

$$T \equiv \left| \frac{J_{trans}}{J_{inc}} \right| = \left| \frac{C}{A} \right|^2 \frac{k_2}{k_1}; \quad \text{NOTE: valid only for } E > V_0$$

and the Reflection coefficient

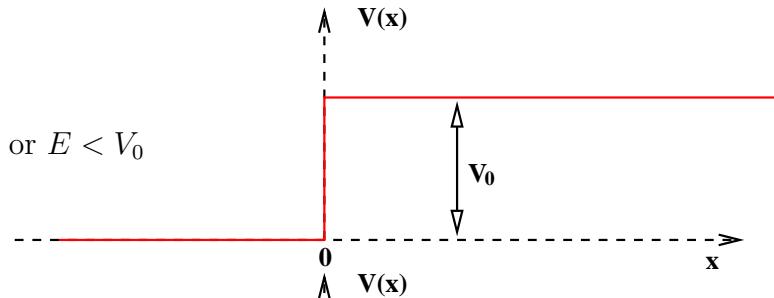
$$R \equiv \left| \frac{J_{refl}}{J_{inc}} \right| = \left| \frac{B}{A} \right|^2$$

Then since probability is conserved we have $T + R = 1$.

Simple/Solvable Square 1-D “Barriers”:

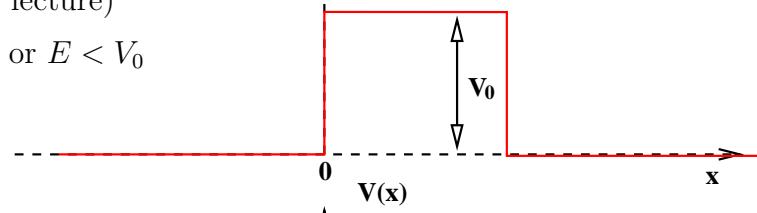
- Simple Step

↪ Can have $E > V_0$ or $E < V_0$



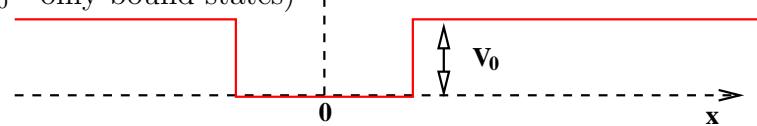
- Square Barrier (see Thur lecture)

↪ Can have $E > V_0$ or $E < V_0$



- Finite Square Well (see text)

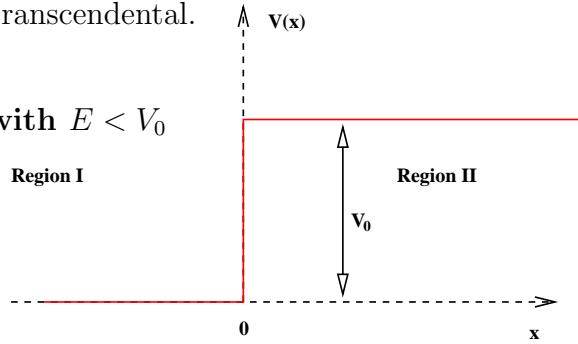
↪ $E > V_0$ (if $E < V_0$ - only bound states)



Above are five “different” problems with a simple Recipe:

- a. “Guess” Solution of Schrödinger Equation

- b. Match ψ and $\frac{\partial\psi}{\partial x}$ (to keep E finite) at boundaries (where V changes)
- c. Do the Math: Solve for amplitudes (A, B, C, \dots) and $J_{inc}, J_{ref}, J_{trans}$ or T and R . Note that equations could be transcendental.



Example: Simple Step with $E < V_0$

Find Transmission and Reflection Coefficients (following the recipe):

- a. Guess solution

$$x \leq 0 : \psi_I(x) = Ae^{ik_1 x} + Be^{-ik_1 x} \quad \text{Region I}$$

$$x \geq 0 : \psi_{II}(x) = Ce^{+ik_2 x} \quad \text{Region II}$$

$$\text{with } E = \frac{\hbar^2 k_1^2}{2m} = \frac{\hbar^2 k_2^2}{2m} + V_0$$

Note: $k_2 = \sqrt{(\frac{2m}{\hbar^2})(E - V_0)}$ but $E < V_0 \therefore k_2$ is imaginary.

Thus let $k_2 = +i\kappa$ (κ is real and positive) \rightarrow need decaying exponential for $x \rightarrow \infty$, giving

$$x \geq 0 : \psi_{II}(x) = Ce^{-\kappa x}$$

and also $E = -\frac{\hbar^2 \kappa^2}{2m} + V_0$ which clearly has $E < V_0$ for $\kappa > 0$

- b. Match at $x = 0$:

$$\psi_I(0) = \psi_{II}(0) \Rightarrow A + B = C$$

$$\text{and } \frac{\partial\psi_I}{\partial x}|_{x=0} = \frac{\partial\psi_{II}}{\partial x}|_{x=0} \Rightarrow ik_1 A - ik_1 B = -\kappa C$$

- c. Algebra: Solve for A, B, C (assumed complex)

$$\begin{cases} \frac{C}{A} = \frac{B}{A} + 1 \\ \frac{C}{A} = \frac{-ik_1}{\kappa} + \frac{ik_1}{\kappa} \left(\frac{B}{A} \right) \end{cases} \Rightarrow \frac{B}{A} \left(1 - \frac{ik_1}{\kappa} \right) = \frac{-ik_1}{\kappa} - 1$$

giving

$$\frac{B}{A} = \frac{-(1 + \frac{ik_1}{\kappa})}{(1 - \frac{ik_1}{\kappa})}$$

and

$$R = \left| \frac{B}{A} \right|^2 = \frac{\left(1 + \frac{k_1^2}{\kappa^2} \right)}{\left(1 + \frac{k_1^2}{\kappa^2} \right)} = 1$$

then

$$\frac{C}{A} = \frac{B}{A} + 1 = \frac{-1 - \frac{ik_1}{\kappa} + 1 - \frac{ik_1}{\kappa}}{1 - \frac{ik_1}{\kappa}} = \frac{\frac{-2ik_1}{\kappa}}{1 - \frac{ik_1}{\kappa}} = \frac{2}{1 + \frac{ik_1}{\kappa}}$$

but since

$$J_{inc} = \frac{\hbar}{2mi} \left(\psi_{inc}^* \frac{\partial \psi_{inc}}{\partial x} - \frac{\partial \psi_{inc}^*}{\partial x} \psi_{inc} \right)$$

$$J_{inc} = \frac{\hbar}{2mi} [A^* e^{-ik_1 x} (+ik_1 A e^{ik_1 x}) - (-ik_1 A^* e^{-ik_1 x}) A e^{ik_1 x}]$$

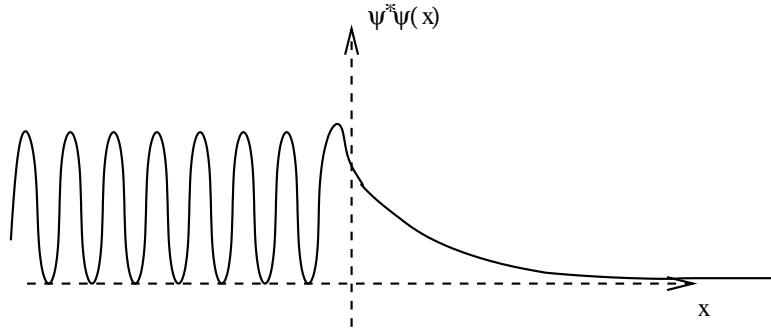
$$= \frac{\hbar}{2mi} |A|^2 (2ik_1) = \frac{\hbar k_1}{m} |A|^2$$

$$J_{trans} = \frac{\hbar}{2mi} [C^* e^{-\kappa x} (-\kappa C e^{-\kappa x}) - C e^{-\kappa x} (-\kappa C^* e^{-\kappa x})]$$

$$= \frac{-\hbar \kappa}{2mi} [|C|^2 - |C|^2] e^{-2\kappa x} = 0$$

$$\therefore T = 0, R = 1$$

What does $\psi^* \psi$ look like?



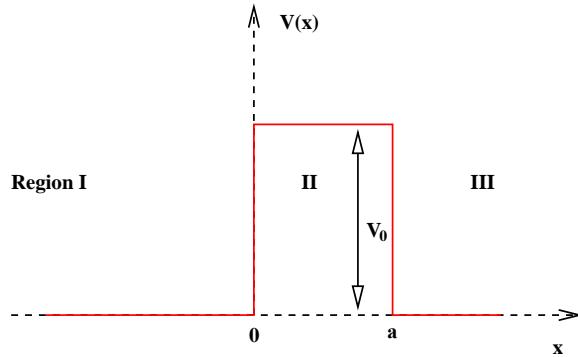
Consider some examples in PHET website for both plane waves and wave packets (Demo in Lecture).

Key Concepts

1. Quantum Tunneling
2. Subtlties in Understanding Tunneling

II. Quantum Tunneling

Assume $E < V_0$



A. Guess the form of the solution:

$$\begin{aligned} x \leq 0; \quad \psi_I &= Ae^{ik_1 x} + Be^{-ik_1 x} \\ 0 \leq x \leq a; \quad \psi_{II} &= Ce^{ik_2 x} + De^{-ik_2 x} = Ce^{-\kappa x} + De^{\kappa x}; \quad k_2 = i\kappa; \text{ see below} \\ x \geq a; \quad \psi_{III} &= Fe^{ik_3 x} \end{aligned}$$

$$\text{using } \hat{H}\psi = E\psi \text{ we get: } E = \frac{\hbar^2 k_1^2}{2m} = \frac{\hbar^2 k_2^2}{2m} + V_0 = \frac{\hbar^2 k_3^2}{2m}$$

$$\therefore k_3 = k_1, \quad k_2 = \sqrt{\frac{2m}{\hbar^2} (E - V_0)} \equiv i\kappa \quad (\kappa \text{ is real and positive, since } E < V_0)$$

$$\text{or } \kappa = \sqrt{\frac{2mV_0}{\hbar^2} - k_1^2} \quad \text{and } E = -\frac{\hbar^2 \kappa^2}{2m} + V_0 \text{ with clearly } E < V_0$$

B. Match wavefunction and derivative at $x = 0$ and $x = a$:

$$\begin{aligned} \psi: \quad A + B &= C + D \\ Ce^{-\kappa La} + De^{+\kappa a} &= Fe^{ik_1 a} \end{aligned}$$

$$\begin{aligned} \frac{\partial \psi}{\partial x}: \quad A(ik_1) + B(-ik_1) &= C(-\kappa) + D(\kappa) \\ C(-\kappa)e^{-\kappa a} + D(\kappa)e^{\kappa a} &= F(ik_1)e^{ik_1 a} \end{aligned}$$

C. Solving for T , we have 4 equations and 4 unknowns: $B/A, C/A, D/A$ and F/A .

After lots of algebra we get

$$\frac{F}{A} = \frac{e^{-ik_1 a}}{\cosh(\kappa a) + i \left[\frac{\kappa^2 - k_1^2}{2k_1 \kappa} \right] \sinh(\kappa a)}$$

Which gives

$$T = \left| \frac{F}{A} \right|^2 \frac{k_3}{k_1} = \left| \frac{F}{A} \right|^2 = \frac{1}{\cosh^2(\kappa a) + \left(\frac{\kappa^2 - k_1^2}{2k_1 \kappa} \right)^2 \sinh^2(\kappa a)} = \frac{1}{1 + \left(\frac{k_1^2 + \kappa^2}{2k_1 \kappa} \right)^2 \sinh^2(\kappa a)}$$

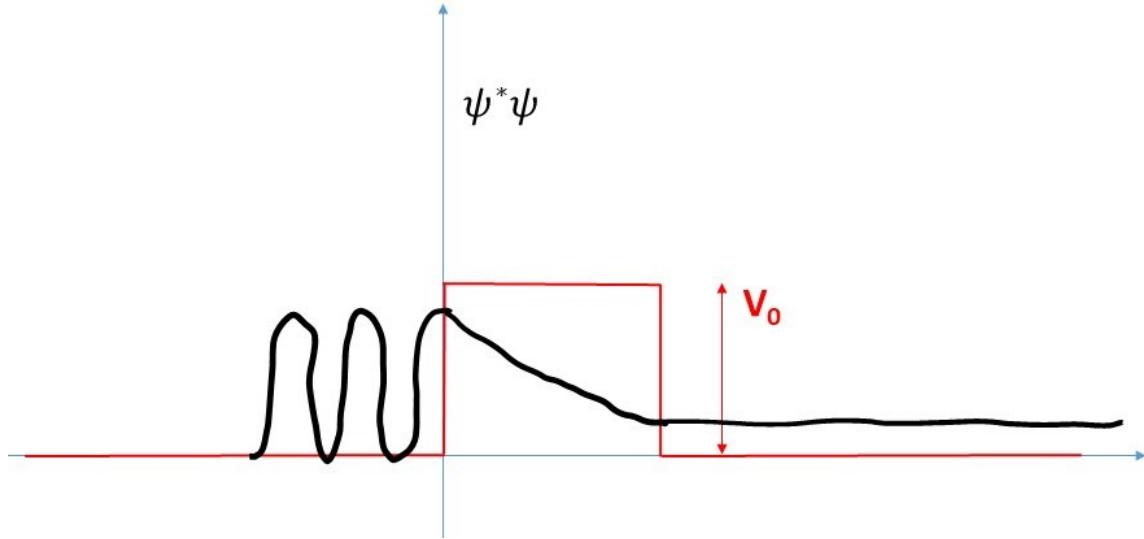
or in terms of E & V_0 :

$$T = \frac{1}{1 + \frac{V_0^2}{4E(V_0-E)} \sinh^2(\kappa a)}$$

Then since probability is conserved, $R = 1 - T$.

We find that $T > 0$ even if $E < V_0 \rightarrow$ particle “tunnels through” barrier!

\rightarrow finite probability of reaching classically inaccessible region



Computer Demo: PHET website using plane waves first and then demo of wave packet tunneling

Interesting Questions: “What is particle’s velocity in barrier?” or “What is particle’s transit time through barrier?”

What is particle’s “velocity” in the barrier?

Well ... since $E = -\frac{\hbar^2 \kappa^2}{2m} + V_0$ and $E = T + V_0$ where T is kinetic energy with $T = \frac{p^2}{2m}$ so apparently

$$T = \frac{p^2}{2m} = -\frac{\hbar^2 \kappa^2}{2m} \text{ and since}$$

$$v = \frac{p}{m} = \frac{\sqrt{-\hbar^2 \kappa^2}}{2m} = \text{imaginary!!}$$

Controversial question in QM see online articles e.g. GOOGLE “transit time in quantum barrier”.

Looks like crazy, weird things going on inside barrier.

We actually have a video of “transit through a quantum barrier” ...

\rightarrow Adventures of Buckaroo Banzai across the 8th Dimension (see lecture Video).