

Problem 2.14 (10 pts)

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\xi^2/2}, \text{ so } P = 2\sqrt{\frac{m\omega}{\pi\hbar}} \int_{x_0}^{\infty} e^{-\xi^2} dx = 2\sqrt{\frac{m\omega}{\pi\hbar}} \sqrt{\frac{\hbar}{m\omega}} \int_{\xi_0}^{\infty} e^{-\xi^2} d\xi.$$

Classically allowed region extends out to: $\frac{1}{2}m\omega^2x_0^2 = E_0 = \frac{1}{2}\hbar\omega$, or $x_0 = \sqrt{\frac{\hbar}{m\omega}}$, so $\xi_0 = 1$.

$$P = \frac{2}{\sqrt{\pi}} \int_1^{\infty} e^{-\xi^2} d\xi = 2(1 - F(\sqrt{2})) \text{ (in notation of CRC Table)} = \boxed{0.157.}$$

/

Problem 2.5 (18 pts)

2 pts (a)

$$|\Psi|^2 = \Psi^2 \Psi = |A|^2 (\psi_1^* + \psi_2^*) (\psi_1 + \psi_2) = |A|^2 [\psi_1^* \psi_1 + \psi_1^* \psi_2 + \psi_2^* \psi_1 + \psi_2^* \psi_2].$$

$$1 = \int |\Psi|^2 dx = |A|^2 \int [|\psi_1|^2 + \psi_1^* \psi_2 + \psi_2^* \psi_1 + |\psi_2|^2] dx = 2|A|^2 \Rightarrow \boxed{A = 1/\sqrt{2}}.$$

4 pts (b)

$$\Psi(x, t) = \frac{1}{\sqrt{2}} [\psi_1 e^{-iE_1 t/\hbar} + \psi_2 e^{-iE_2 t/\hbar}] \quad (\text{but } \frac{E_n}{\hbar} = n^2 \omega)$$

$$= \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{a} \left[\sin\left(\frac{\pi}{a}x\right) e^{-i\omega t} + \sin\left(\frac{2\pi}{a}x\right) e^{-i4\omega t} \right] = \boxed{\frac{1}{\sqrt{a}} e^{-i\omega t} \left[\sin\left(\frac{\pi}{a}x\right) + \sin\left(\frac{2\pi}{a}x\right) e^{-3i\omega t} \right]}.$$

$$\begin{aligned} |\Psi(x, t)|^2 &= \frac{1}{a} \left[\sin^2\left(\frac{\pi}{a}x\right) + \sin\left(\frac{\pi}{a}x\right) \sin\left(\frac{2\pi}{a}x\right) (e^{-3i\omega t} + e^{3i\omega t}) + \sin^2\left(\frac{2\pi}{a}x\right) \right] \\ &= \boxed{\frac{1}{a} \left[\sin^2\left(\frac{\pi}{a}x\right) + \sin^2\left(\frac{2\pi}{a}x\right) + 2 \sin\left(\frac{\pi}{a}x\right) \sin\left(\frac{2\pi}{a}x\right) \cos(3\omega t) \right]}. \end{aligned}$$

6 pts (c)

$$\begin{aligned} \langle x \rangle &= \int x |\Psi(x, t)|^2 dx \\ &= \frac{1}{a} \int_0^a x \left[\sin^2\left(\frac{\pi}{a}x\right) + \sin^2\left(\frac{2\pi}{a}x\right) + 2 \sin\left(\frac{\pi}{a}x\right) \sin\left(\frac{2\pi}{a}x\right) \cos(3\omega t) \right] dx \end{aligned}$$

$$\int_0^a x \sin^2\left(\frac{\pi}{a}x\right) dx = \left[\frac{x^2}{4} - \frac{x \sin\left(\frac{2\pi}{a}x\right)}{4\pi/a} - \frac{\cos\left(\frac{2\pi}{a}x\right)}{8(\pi/a)^2} \right]_0^a = \frac{a^2}{4} = \int_0^a x \sin^2\left(\frac{2\pi}{a}x\right) dx.$$

$$\begin{aligned} \int_0^a x \sin\left(\frac{\pi}{a}x\right) \sin\left(\frac{2\pi}{a}x\right) dx &= \frac{1}{2} \int_0^a x \left[\cos\left(\frac{\pi}{a}x\right) - \cos\left(\frac{3\pi}{a}x\right) \right] dx \\ &= \frac{1}{2} \left[\frac{a^2}{\pi^2} \cos\left(\frac{\pi}{a}x\right) + \frac{ax}{\pi} \sin\left(\frac{\pi}{a}x\right) - \frac{a^2}{9\pi^2} \cos\left(\frac{3\pi}{a}x\right) - \frac{ax}{3\pi} \sin\left(\frac{3\pi}{a}x\right) \right]_0^a \\ &= \frac{1}{2} \left[\frac{a^2}{\pi^2} (\cos(\pi) - \cos(0)) - \frac{a^2}{9\pi^2} (\cos(3\pi) - \cos(0)) \right] = -\frac{a^2}{\pi^2} \left(1 - \frac{1}{9} \right) = -\frac{8a^2}{9\pi^2}. \end{aligned}$$

$$\therefore \langle x \rangle = \frac{1}{a} \left[\frac{a^2}{4} + \frac{a^2}{4} - \frac{16a^2}{9\pi^2} \cos(3\omega t) \right] = \boxed{\frac{a}{2} \left[1 - \frac{32}{9\pi^2} \cos(3\omega t) \right]}.$$

$$\text{Amplitude: } \boxed{\frac{32}{9\pi^2} \left(\frac{a}{2}\right)} = 0.3603(a/2); \quad \text{angular frequency: } \boxed{3\omega = \frac{3\pi^2\hbar}{2ma^2}}.$$

2 pts (d)

$$\langle p \rangle = m \frac{d\langle x \rangle}{dt} = m \left(\frac{a}{2}\right) \left(-\frac{32}{9\pi^2}\right) (-3\omega) \sin(3\omega t) = \boxed{\frac{8\hbar}{3a} \sin(3\omega t)}.$$

4 pts (e) You could get either $\boxed{E_1 = \pi^2\hbar^2/2ma^2}$ or $\boxed{E_2 = 2\pi^2\hbar^2/ma^2}$ with equal probability $\boxed{P_1 = P_2 = 1/2}$.

$$\text{So } \langle H \rangle = \boxed{\frac{1}{2}(E_1 + E_2) = \frac{5\pi^2\hbar^2}{4ma^2}}; \quad \text{it's the average of } E_1 \text{ and } E_2.$$

SP2 (10 pts)

2 pts a) This is a bad question. Quantum mechanics can't answer a question about where a particle is, only the probability of measuring the particle at some location.

2 pts b) This is a good question. Yes, you can predict the energy since the particle is in an energy eigenstate of this potential.

2 pts c) This is a good question. Yes, it really is.

(Alternative answer: quantum mechanics is not bizarre in the sense that we can make accurate predictions using the mathematical formalism.) (Any answer with a valid justification will be accepted for this one.)

2 pts d) This is a bad question. As in part a), quantum mechanics can't answer a question about what value of momentum the particle has, only the probability of measuring a particular momentum.

Alternative answer: this is a good question - the particle is in an energy eigenstate, not a zero momentum eigenstate, so the answer is no.

2 pts e) This is a good question. The answer is no. A stationary state is in an energy eigenstate, but a measurement of its position will be a value from a distribution (e.g. $\Psi^* \Psi$), which will be somewhere between 0 and a , but different each time.

SP3 (6 pts)

According to Wikipedia's Baseball (ball) page, a regulation baseball weighs 0.142 - 0.149 kg.

Let our MLB fastball weigh 0.145 kg. For a fastball travelling at 100 mph, the momentum is roughly $6.48 \text{ kg} \cdot \text{m} / \text{s}$.

The de Broglie wavelength $\lambda = h/p \approx 1.022 \times 10^{-34} \text{ m}$.

This is about 32 orders of magnitude smaller than the diameter of the baseball. Our baseball will not display any wavelike behavior, as a result.