Studies of Fundamental Interactions with Trapped 8Li and 8B Ions

A. Pérez Galván1

1Argonne National Laboratory

(Dated: February 2, 2015)

Measurements of the beta-neutrino angular correlation coefficient ($a_{\beta\nu}$) in β decay provide information of the presence of possible exotic interactions beyond the Standard Model. The 8Li-8B radioactive mirror nuclei represent a particularly attractive system for these studies due to their small masses, large Q-value, and a triple-correlation that enhances the sensitivity to detect so-called “New Physics.” Furthermore, it is possible to search for the existence of Standard Model-forbidden Second-Class Currents and to test the Conserved-Vector-Current hypothesis by comparing correlation measurements in 8Li and 8B. In this talk I will describe the experiments carried out at Argonne National Laboratory to measure with high precision $a_{\beta\nu}$ with trapped 8Li and 8B ions and present the latest results of our effort to test the Standard Model at low energies. I will also present future plans of our ion trapping program to test discrete symmetries like Parity and Time-reversal.